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Figure 1: Groundwater outflow morphology, photographs of the scale experiments (Marra et al, 2015). (a) Outflow from seepage 
above the source area with downstream lobes and incising channel. (b) Outflow pits with standing water surrounded by sedimen-
tary lobes, converging flow features and downstream valleys. (c) Radial cracks due to formation of subsurface reservoir moments 
before outflow. (d) Close-up of source area showing converging flow morphology and terraces in the background. (e) Close-up of 
outflow pit (lower right and upper right) with sedimentary lobe, incised valley and smaller lobes of initial outflow (upper middle). 
(f) Close-up of sieve lobe with later incised valley in the background.

• From a hydrostatic (unpressurized) 
aquifer, groundwater emerges at 
depressions at the surface (Figure 2a).

• Groundwater can become pressurized when 
confined, e.g. by the cryosphere (Figure 2b). 

• Pressure could be driven by a elevation 
difference between infiltration 
source and outflow location.

• Groundwater could become pressurized 
by local processes like tectonism 
and volcanism (Figure 2c).

• Furthermore, subsurface obstructions may 
produce seepage at the surface (Figure 2d) 

Figure 2: Hypothesized groundwater outflow mechanisms for Mars. (a) Groundwater outflow due to seepage from a hydrostatic 
aquifer, resulting in ponding in a depression and outflow at slopes. (b) In case of a pressurized aquifer, depressions can overflow 
and outflow locations are a function of subsurface properties. (c) Local pressurization and (d) subsurface heterogeneities may alter 
the outflow location.

• Lobes indicate infiltration in early stage outflow
• Channelization: sustained outflow

• Holes / sand volcanoes: fissure outflow
• Cracks / bulging: high pressure outflow

EXPERIMENT RESULTS: SMALL-SCALE MORPHOLOGY

RECONSTRUCTION OF GROUNDWATER SYSTEM

• Strong relation between outflow locations and tectonic structure:
 - Outflow features described here and other outflow channels
 - Indicates single, closed aquifer - increasing pressure at surface with same base pressure

• Outflow activity throughout history:
 - Hesperian large outflow channels, perhaps still recharged by infiltration
 - Continued activity in Amazonian
 - Post-Valles Marineris activity: sustained pressure or re-pressurized by tectonism

• Climate: no warm conditions required for tectonic-triggered groundwater outflow
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CONCLUSIONS

• Groundwater outflow creates:
 - Lobes (early stage)
 - Incised valley (later stage)
 - Crack and pits (high pressure source)

• Small outflow features on Mars:
 - Lobes (Hydrae Cavus, Ophir Catena)
 - Channelized lobes (Ganges Catena)
 - Small outflow channel (Juventae Cavi)
 - Fractured features without outflow

IMPLICATIONS

• Trend in outflow magnitude in Ophir 
and Lunae Plana consistent with 
pressurized outflow from single aquifer.

• Outflow triggered by tectonics.
• Sustained presence of groundwater 

for large part of Martian history.
• Climate does not require an optimum.
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INTRODUCTION

Outflow channels on Mars are related to the re-
lease of groundwater from pressurized aquifers. 
However, the hydrological and corresponding cli-
mate conditions remain a subject of debate and 
many more small features show important details.

METHODS

We investigate the detailed morphology of possible 
pressurized groundwater outflow systems in com-
parison to landscape evolution experiments.
• Experimental setup consists of a flume 

of 6 m long x 4 m wide and 1.20 m 
deep. See Marra et al., 2015.

Comparison of Martian morphology using image-
ry and elevation data.

MARS: OPHIR AND LUNAE PLANA - BETWEEN THE OUTFLOW CHANNELS

HYDRAE CAVUS: LOBE FROM PIT

• Pit formed by collapse
• Lobe represent early stage outflow

Figure 4: Morphology of Hydrae Cavus.

Figure 3: Overview map of study area. (a) Colored MOLA data overlain by daytime THEMIS IR mosaic with 1, 2, and 3 km MOLA-contours. (b) Daytime 
THEMIS IR mosaic showing extends of mapped area in Figures 4-7

GANGES CATENA: CHANNELIZED LOBES

• Pit chain relates to tectonic structure
• Lobe represent early stage outflow
• Channalization due to sustained discharge

Figure 5: Outflow features from Ganges Catena. 

JUVENTAE CAVI: COLLAPSE AND OUTFLOW

• Field of pits: collapse related to Chasmata
• Chaos and outflow channel: high energy outflow

Figure 6: Juventae Cavi and associated outflow channel.

OPHIR CATENE: LOBES FROM PIT CHAIN

• Pit chain relates to tectonic structure
• Lobe represent early stage outflow
• Lobe age: Amazonian, 1.23 Ga

Figure 7: Lobes around Ophir Catena.

Figure 8: Several fractured features possibly related 
to pre-outflow processes. a) Floor-fractured crater, b) 

Fractured rise in Margaritifer Chaos, c) Hydrae Cha-
os, d) Area upstream of Ravi Vallis (Northeast of this 
image), and Shalbatana Vallis (North of this image) 

with fractures and depressions.

FRACTURES BY GROUNDWATER?

• Several fractures features on Mars
• Pattern similar to experiments
• Other processes (volcanic) are possible

Figure 9: Schematic cross-section from Valles Marineris showing the location of different types of outflow features. Values correspond 
with groundwater head above surface and corresponding pressure in case of a confined aquifer with a pressure head at 4 km, which 
is equivalent to a source lake at that elevation.


