RN The imprint of crustal density heterogeneities on seismic wave propagation —

%
niversiteit Utrecht % L % N WO Eidgendssische Technische Hochschule Ziiric

:{AA!\\\ . . . e . . . . gy m— wiss Federal Institute of Technology Zurich
Agnieszka Plonka (Universiteit Utrecht, a.i.plonka@uu.nl), Andreas Fichtner (ETH Zurich)

1. Abstract and motivation 4. Results e —
4.4 Does the source-receiver configuration matter?

- Lateral density variations are the source of mass transport in the Earth at all scales;
- Seismic traveltimes and gravity provide only weak constraints with strong trade-offs and so the density structure of the Earth remains We compare seismograms computed for 3D velocity and density (,3D-all”) structure in the uppermost 40 km with seismograms computed for the same 3D .
largely unknown. velocity structure, but 1D density kept as PREM with 40 km crust (,3D-vel” structure). All timeshifts and amplitude differences presented in panel 4 are SE I
| | comparisons between the ,,3D-all” and ,,3D-vel” structures To answer this question, we use a | | | | | T o1l | | | o
Traveltimes of body and surface waves do not see density structure due to [1]: fixed source-receiver configuration | 1 2 5:]”\*
- backward scattering off density perturbations of the body waves in the (p, vs, vp) parametrization B A D RS-V and look at the misfit functions 2 sk {1 & = K \ i
- oscillatory shape of density sensitivity kernels for Rayleigh waves 4.1. The effect of medium complexity computed for each of the five different & o . T _oa} _
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We propose to develop a seismic tomography technigque that directly inverts for density, using complete seismograms rather than time [4 time 4
arrival times of certain waves only. The first task in this challenge Is to systematically study the imprints of density on synthetic Random media are uncorrelated with | | | |
seismograms. To compute the full seismic wavefield in a 3D heterogeneous medium without making significant approximations, we use 7 | each other, therefore any correlation .l | % sml
numerical wave propagation based on a spectral- element discretization of the seismic wave equation. Figure 6 (left): Normed - between the misiits we may observe : ;J—T—‘ﬁ = N
We compare the imprint of 3D velocity and 3D density structure in the crust with the imprint of the 3D velocity structure on the ol | histograms of time shifts We clearly observe that misfit values grow would be caused by the source- 5 oo = rad— g
observed seismograms. The 3D heterogeneities used in simulations are generated randomly and the experiment was performed for a SgaCk?S ;Of ";‘1” t][?e sgagg)ns of with growing complexity of the medium. receiver configuration. 2 sl ; ‘ | £
set of different lateral and vertical correlation lengths. We then guantify the possible bias in Q and velocity estimates that may be 3 ‘ ;ftee??he ?i:stt giﬁlésrfence > | | | | | | 2 o6 | | | |
caused by 3D density structure. | | petween the waveforms. Cogc_:lusu:rr:: the more s_cf:_atte:etl;? "(?I the_t We do not see any similarities 0 150 ;.;.J::m 150 GO0 0 150 ;.mtr:w 150 500
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. experiment with 50 km lateral (Figure 13), therefore, the source- S oa6f \
2. The experimental setup 0.5 _ | correlation length of the receiver configuration does not = | £ sl /73/ A
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We generate 3D random media by computing a random (white) phase spectrum, modulating it, using the - e i R w1 e :_._u'-fj- 01 y | | | | | | | Figure 13: Misfits computed between fully 3D medium and 3D velocity structure.
Fourier transform to obtain space domain representation and then scaling to the desired root mean square S e g s r}“’! Figure 7 (down): analogical Each color represents a different random realization of a medium. Results for one
value [2]. Lateral correlation lengths used in the simulations presented are: 50 km (complex medium, el e AR TR T ALY plot for amplitude diiferences station, left: time shifts, right; relative amplitude difference. Frequency band 0.02 -
Figure 1), 200 km (the reference experiment, Figure 2) and 1000 km (smooth medium). Vertical correlation i Vb LSRG -| ahis 3 0.04 Hz.
lengths used are, respectively: 10 km, 20 km and 100 km. Each 3D random medium can be used by the . = chift and rela e dard deviations { .
numerical package as 3D density, SV, SH or P velocity structure. The 3D structures are superimposed 20°F 5o 30°E 3B 0°E —0.5 — Table 1: Time shift and relative amplitude difference standard deviations (average 5. Are tomogeranhic models biased if we do not account for densitv?
onto the uppermost 40 km of the 1D PREM model [3] with 40 km crustal thickness. 05 | _ over components) for experiments with different medium complexity ' srap y:
0= lateral correlation length  time shift standard deviation  amplitude standard deviation )
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2.2 Numerical wave propagation We observe that density - related misfits TyY o _ | |
accumulate with distance 248 = | _ If we assume that amplitude changes are attenuation-related (where
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