Remote sensing of canopy nitrogen in Mediterranean forests

Y. Loozen1,2, K. T. Rebel1, D. Karssenberg2, S.M. de Jong2, M.J. Wassen1

Background
Nitrogen is an essential nutrient for plant growth. Leaf nitrogen content is linked to photosynthesis capacity, leaf chlorophyll content and Rubisco. Canopy nitrogen, which is the leaf nitrogen content averaged over a forest stand, is linked to forest productivity (1) and canopy-level photosynthetic capacity (2). For these reasons, it is crucial to find efficient ways to measure canopy N.

Relevance
Remote sensing has already been used to estimate canopy nitrogen at regional scales (2). However, few studies to date have looked at canopy nitrogen in Mediterranean forests.

Research challenge
We investigated the opportunity to detect canopy nitrogen in Mediterranean forested ecosystems at regional scale using the Meris Terrestrial Chlorophyll Index (MTCI), a readily available remote sensing product.

Remote sensing analysis
MTCI is a remote sensing product from MERIS, aboard Envisat satellite. It is a based on the spectrum red-edge region. Canopy N data were analyzed with MTCI using a linear regression method.

Results
The relationship between canopy N and MTCI was significant (p< 0.001, R^2 = 0.13 ). The method performed better for broadleaves deciduous plots (R^2 = 0.10) than for needleleaves or broadleaves evergreen plots. The relationship between leaf N and MTCI was also higher for the plots sampled during summer (R^2 = 0.28 in July).

Conclusions and perspective
- The relationship between canopy N and MTCI was significant
- Higher correlation for both deciduous forest stands and plots sampled during summer