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Sand suspension beneath sea-swell waves
in the shoaling and surf zone

Joost Brinkkemper, Anouk de Bakker and Gerben Ruessink

Motivation Methods

Breaking waves and bores inject large amounts of turbulence into the

. * Field-scale laboratory experiment, irregular waves
water column as vortices, which can travel downward and entrain sand . One imbosed tidal cycle P 8
from the bed. The timing of sand entrainment with respect to Turbul P ) {] pec b e bed ocats
[ ]

the wave orbital motion determines the magnitude and direc- urbulence at three heights above the bed at one location
tion of sand transport by sea-swell waves. Coastal evolution * Sand concentration at 3-7 heights above the bed at 4 locations
models rarely include the effect of this surface-induced turbulence on * Coupling with cross-shore wave-orbital motion (u,) through phase-averaging
sand suspension and subsequent transport to predict surf-zone mor- =
phodynamics. R ————
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Here, we compare sand stirring by breaking waves to non-breaking B measurements
waves above ripples by using laboratory measurements collected o ) . . . . .
during the Barrier Dynamic Experiment Il (BARDEXII). 40 50 60 70 80 90
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Results

Non-breaking waves

above vortex ripples Normalized phase-averaged concentration
at four locations, sorted by relative waveheigth

Breaking waves
above subdued ripples
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Conclusions

Non-breaking waves above ripples:
- phase-lag increases upwards

- thus only (onshore) wave-driven sand transport close to bed
- cumulative transport is close to zero

Breaking waves:
- small negative phase-lag

- during offshore phase only suspension close to the bed

- onshore wave-driven transport throughout the water column
- max onshore transport in outer surf-zone

Magnitude and direction of short-wave suspended sand transport depends highly on turbulence characteristics and
ripple steepness.

< Plunging breaker during BARDEXII in the Delta Flume.



