Significant ice sheets during the cold mid-Paleocene?

Peter K. Bijl*¹, Margot J. Cramwinckel¹, Appy Sluijs¹, Henk Brinkhuis^{1,2}, Francien Peterse¹, Stefan Schouten^{1,2}

The mid-Paleocene (60-58 Ma) had atmospheric pCO₂ concentrations about as low as present-day. Deep-sea temperatures and global sea level were relatively low. For as yet unknown reasons, Paleocene cold gradually changed into the warmth of the Early Eocene Climatic Optimum, with high pCO₂ and global temperatures. It was suggested that the mid-Paleocene was cold enough to sustain ice sheets on Antarctica, but neither physical evidence nor δ^{18} O tracers could confirm this suspicion. Questions that remain are: Were there ice sheets during the cold mid-Paleocene? If there were no large ice sheets, why did cold climates of the mid-Paleocene not result in the formation of large ice sheets? And why then was global sea level so low?

Figure 1. Mid-Paleocene (59 Ma) paleogeographic reconstruction (using G-Plates and Torsvik et al., 2012). Plotted is timing of sea level low stand and minimum sea surface temperatures.

References a Bijl et al., 2009; 2013 b Hollis et al., 2014 c Bijl, Frieling, data in progress

g Cramwinckel, MSc thesis UU d Bowman et al., 2015 h Mancini and Tew, 1990 e Kemp et al., 2014 f Bijl, unpublished i Miller et al., 1998

Figure 5. Global long-term water cycle, from Bodnar et al., 2013). Particularly old, thick and cold lithosphere is capable of storing large volumes of water and extracting it from surface reservoirs. The fast subduction of Carboniferous oceanic crust under Asia during the Paleocene might have subtracted large quantities of water causing blobal sea level to be low during the mid-Paleocene. This idea is now further explored.

j vd Wal, MSc thesis UU k vd Meer et al., 2014 I Nicolai, MSc thesis UU in prep. m Pearson et al., 2007 n Charisi et al., 1995 o Guasti et al., 2005

Relatively low sea level

The low sea level during the mid-Paleocene is remarkable given ocean spreading rates are relatively high, as seen in subduction slab lengths and Sr isotope ratios (Fig. 2). The absence of major positive excursions in benthic foraminiferal $\delta^{18}O$ (Fig. 3) precludes the possibility of storage of water as ice sheets on the continents. As alternative, Paleocene sea levels minght have been low due to excessive water drawdown by accellerated subduction of old lithospheres during this time. In this scenario, water is stored for longer time in the thick subducted slab, to be returned via volcanic activity (Fig. 4).

Figure 4. Meridional SST gradients based on TEX₈₄ analyses for early Eocene (orange), middle Eocene (blue) Oligocene (magenta) and mid-Paleocene (green). Paleolatitudes based on v. Hinsbergen et al., 2015. Data recalibrated from Liu et al., 2009, Bijl et al., 2009, Houben, 2012 and unpublished records.

Take Home Message

- Mid-Paleocene was relatively cold; meridional temperature gradients steep - Sea level extremely low globally; only outer shelf sedimentation

- No physical evidence for glaciations

- Possible water loss through accellerat-

ed subduction of old oceanic crust?

p Steurbaut, 1998 q Heilman-Claussen, 1985 r Frieling et al., 2014

* p.k.bijl@uu.nl

1. Department of Earth Sciences, Utrecht University 2. Royal Netherlands Institute for Sea Research

Meridional SST gradients

chappelijk Onderzoel Aard- en Levenswetenschappei