

Taking some heat off the INDCs? The potential of short-lived climate forcers ' mitigation

Contact: Mathijs.Harmsen@pbl.nl Tel: +31646934638

Motivation

The main focus of this study is to understand:

What are the potential short-term climate benefits of Short-Lived Climate forcers in the context of the intended nationally determined contributions (INDCs)?

First studies show that ambitions in the INDCs are too low to reach greenhouse gas (GHG) reduction levels consistent with a cost-optimal pathway towards a 1.5 or 2 degree target. Due to this delayed action, a steady short-term global mean temperature (GMT) rise can be expected, with potentially adverse effects. The temperature rise can be mitigated by increasing the ambition of the INDCs, but in the short term there might also be a role for intensified reduction of short-lived climate forcers (SLCFs): methane (CH₄), ozone (O₃), black carbon (BC) and hydrofluorocarbons (HFCs)

Approach

This study describes the EMF30 (30th modelling forum) work that goes into the relation between potential SLCF mitigation and the climate benefit in the INDCs. Eight models have taken part in the subset of INDC scenarios (see table "models"), with a large variety in modeling approaches (representation of the economy, level of foresight, representation mitigation options, and technological detail). Five scenarios from the project are particularly relevant in that context (see table "**scenarios**").

The model comparison provides an assessment of regional and sectoral implications for emissions and the resulting global implications on the short-term climate. The aim of this assessment is to understand to which degree additional SLCF policy on top of the INDCs can limit climate change. Secondly, the contribution of the individual forcers to the cooling effect is determined by estimating the reduced radiative forcing per SLCF. In a second assessment, we have tried to determine What can we already expect from the INDCS without additional SLCF policy. To that end, the INDCs and national plans of the G20 countries have been assessed in terms of expected (pledged) SLCF emission controls.

Discussion and Conclusions

The proposed SLCF measures are found to have only a small effect (<1%) on reducing the maximum temperature before 2100, mostly because in the second half of the century these gases are already significantly reduced, either directly or indirectly via changing the energy system.

However, maximizing SLCF mitigation can reduce the maximum temperature rate of change in the short term, by up to 23%. All models show that the short-term reduction in temperature rate of change is particularly relevant in an INDC + 2 degree C case. In a continued INDC case the effect is less certain, and some models project a delay, but not a decrease in the temperature rate of change.

All three SLCF groups can potentially contribute to this effect, methane has the largest impact. Additional HFC reduction is likely to be limited, especially if the recent inclusion of HFC reduction under the Montreal protocol will prove successful.

The temperature reducing potential from SLCFs as found in this study can be considered **limited compared to earlier studies for several reasons:** 1) Considerable CH₄ reductions are already expected from the INDCs, partly due to CO₂ reduction 2) The maximum emission reduction potential from CH₄ and BC is assumed lower in the short-term 3) Radiative forcing from BC is assumed lower with less favourable BC/OC (organic carbon) ratios.

If CH4 reduction resulting from the INDCs is limited, due to the fact that it is not sufficiently embedded in national policies, the short-term climate effect of additional SLCF policy could **prove to be higher.** However, even with this study's assessment of the national plans one cannot be sure if 1) Countries will pursue additional SLCF reduction efforts in a later stage to reach INDC goals, or 2) Countries would use additional SLCF policy as a substitution for CO₂ policy.SLCF policy can only be beneficial if it is additional to long-lived climate forcer (LLCF, i.e. CO₂) policy. If CO₂ reduction would be substituted by SLCF reduction it would mean that long-term climate goals are more difficult to reach. Therefore, the conclusions from this study only hold if additionality can be assured. However, there is legitimate concern that substitution could take place.

Mathijs Harmsen, Oliver Fricko, Jérome Hilaire, Detlef van Vuuren, Laurent Drouet, Olivier Durand-Lasserve, Shinichiro Fujimori, Kimon Keramidas, Keywan Riahi, Fuminori Sano

Μ	od	e	S
	UU		3

Model	Institute	Туре	Scenarios *
AIM-CGE	NIES, Japan	Partial equilibrium	n All
DNE21+	RITE, Japan	General equilibriu	m All
ENV-Linkages	OECD, France	General equilibriu	m 1,2
IMAGE	PBL/UU, The Netherlands	Partial equilibrium	n All
MESSAGE-GLOBIOM	IIASA, Austria	General equilibriu	m All **
POLES	ENERDATA, France	General equilibriu	m 1,2,3,4
REMIND	PIK, Germany	General equilibriu	m All
WITCH	FEEM, Italy	General equilibriu	m All
* See numbering from sce	enario table below		
Scenarios			
Scenario	2015-2030	2030-2100	Other policies
1) INDC	Implementation	INDCs based	
,	INDCs	extrapolation	
2) INDC+SLCF	Implementation	•	SLCF policy = Strong
	INDCs	scenario	methane (CH ₄) and black carbon (BC) mitigation in the short term. CH4: High, increasing methane abatement price BC mitigation predominantly in the residential and transport sector
3) INDC/2degC	Implementation INDCs	Towards 2 degrees in 2100	See above
4) INDC/2degC+S	LCF Implementation INDCs	Towards 2 degrees in 2100	See above

SLCF policy in the INDCs

INDCs

5) INDC/2degC+SLCF+HFCs Implementation

	INDCs	National plans
	Included GHGs?	Explicit direct non-CO2 policies?
Argentina	all	None
Australia	all	HFC (85% reduction in 2036)
Brazil	all	None
Canada	all	None
China	CO2-only	HFC (partly). Reduction of HCFC22 (68% in 2025), leading to reduced HFC23 emissions
European Union	all	All (Reduction compared to 1990, 72%-73% (in 2030) and 70% -78% (in 2050))
India	all *	None
Indonesia	all	None
Japan	all	HFC (partly) (Reduction of fluorinated gases: 9.7- 15.6 MtCO2e in 2020 compared to BAU, is +/- 10%)
Mexico	all	Black Carbon (51% - 70% reduction in 2030)
Republic of Korea	CO2-only	None
Russian Federation	all	None
Saudi Arabia	all	None
South Africa	all	None
Turkey	all	None
United States of America	all	CH4: 40-45% reduction in oil & gas production by 2025, HFC: 85% reduction by 2033

Towards 2

degrees in

2100

See above +

in 2030

maximum feasible

reductions for HFCs

* India excludes land-use policies, so also land-use related non-CO₂ measures

National plans of the G20 countries are mainly focussed on reducing CO₂. This could increase the short-term potential of SLCF policy.

While most of the INDCs are defined in terms of total GHG reduced compared to a baseline or base year value, most national plans are aimed at CO₂ only. With relatively little non-CO₂ policies in the national plans, it is likely that in the short term, INDC targets will mainly be met with CO₂ policies. If this will remain the case until 2030, there is a larger potential for additional SLCF policies. However, these then need to be additional to CO₂ policies and not result in substitution.

Several factors limit the reduction potential of the two main SLCFs: Methane and Black Carbon

Methane emissions in the INDCs are expected to decrease considerably compared to the no-policy reference case, even in the absence of additional SLCF policy. Partly this is the result of CO2 policy which indirectly reduces methane. Partly this may be ar of the models if the INDC targets are more focussed on CO2 mitigation (see block "SLCF policy in the INDCs") The largest mitigation potential in the short term is found in fossil fuel production.

scenarios as a result of air pollution policy. This reduces the reduction potential in 2030 somewhat in the INDC scenario. The residual mitigation measures are limited to energy supply and demand, since land-use related sources have relatively large co-emitted organic carbon emissions which acts as a climate cooler. The largest mitigation options are the reduction of coal and traditional biomass in the residential sector.

Climate impacts

Acknowledgements

grant agreement No 642147 (CD-LINKS)

Utrecht University

Faculty of Geosciences Copernicus Institute of Sustainable Development

Energy Demand Residential and Commercial
 Energy Demand Transportation
Energy Demand Industry
Energy Supply
Land Use Savannah Burning
Land Use Forest Burning
 Land Use Agricultural Waste Burning
Reduction Energy Supply
Reduction Residential and Commercial
Reduction Transportation
 Reduction Industry

Black Carbon emissions are expected to strongly decrease in all

Enerdata intelligence + consulting	Fondazione Eni Enrico Mattei
International Institute for Applied Systems Analysis	MCC
National Institute for Environmental Studies	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
PIK	Research Institute of Innovative Technology for the Earth

This study is part of the 30th energy modelling forum (EMF30)

EMF

	INDC Effect SLCF policy	INDC + 2 degree Effect SLCF (+HFC) policy	
	Max T/yr change	Max T/yr change	Max T change
AIM/CGE	-13%	-15%	-3%
DNE21+	-3%	-13%	0%
ENV-LINKAGES	-1%		
IMAGE	-13%	-15%	-3%
MESSAGE	-10%	-14%	-3%
POLES	-23%	-22%	-3%
REMIND	1%	-12%	-2%
WITCH	-17%	-17%	-1%

Addtional SLCF policy has little effect on reducing the maximum temperature before Additional SLCF policy has incle effect of reducing the finance of the section reducing the finance of the section reduces the temperature change rate at the beginning of the Beference

In an INDC-to-2degree scenario, SLCFs are found to have a relatively small effect (0 % – 3 %) on reducing the maximum temperature before 2100. The main reason is that SLCF reductions are already high in the normal INDC-to-2degree case because of direct and indirect emission reduction. Direct reduction is maximized several years before the peak temperature year in most models (2050-2065). SLCF policy can contribute to lowering the maximum global temperature change rate particularly in the INDC + 2 degree scenario (-12% to -22% reduction in the eight IAMs). Reduction of the temperature change rate is also likely in the continued INDC scenario (1% to -23% reduction) although some models project a delay but not a decrease in the maximum change rate as a result of SLCF policy (see figures)

All three SLCF groups can contribute to reducing the temperature change rate. Methane reduction has the largest effect

This figure shows the average RF difference between "INDC/2degC" and "INDC/2degC+SLCF+HFCs" The largest RF reducing effect occurs in 2030. In that year, the relative impact of additional methane reduction is 41%, of BC/OC reduction 26% and of HFC reduction 6%. A large share of the decrease in RF can be accounted to a reduction in ozone (27%), which can be attributed to the reduction of the ozone precursors methane and NOx The impact of HFC reduction appears to be limited, but the model differences in terms of emission reductions are relatively large (in some models, HFCs contribute to a maximum of 15%)