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1. Introduction

A common approach towards describing the rheology of the Earth when
modelling plate tectonics is to characterize the mantle and lithosphere
by a viscoplastic rheology. In order to accurately describe the Earth’s
rheology, one has to realise that both exhibit elastic properties.
The mantle behaves elastically on a short time scale, as with seismic
waves, and viscously on a geologic timescale. The lithosphere acts
as an elastic shell which can store stresses over geological timescales.
Several studies have shown that elasticity is likely to play an important
role during subduction [1][2][3] .

To determine the influence of elasticity on subduction evolution, a new
numerical finite element thermo-mechanically coupled visco-elastic
code based on the marker-and-cell technique has been developed.

2. A formulation for viscoelasticity

For the implementation of a viscoelastic rheology, a Maxwell vis-
coelastic model is used. This model assumes a viscoelastic material
to react as an elastic and viscous element connected in series (shown in
Fig. 1). This results in the strain rate tensor being a summation of the
elastic strain rate tensor ε̇e and the viscous strain rate tensor ε̇v (1).

ε̇ = ε̇e + ε̇v (1)

∇ · {−pI + τ} = ρg (2)

p = −λ∇ · v (3)

τ t+∆t = 2ηeff ε̇
t+∆t (4)
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+

{K(λ) + K(ηeff)}Vt+∆t = F−Rt (5)

(2) momentum con-
servation equation
(3) penalty formu-
lation relating pres-
sure to strain rate
(4) viscoelastic ex-
pression for the de-
viatoric stress
(5) finite element
expression used to
solve for the velocity
field V

Here, p is the pressure, λ the penalty factor, v the velocity, τ the
deviatoric stress, ω the rotation rate and

ηeff = η
∆t

∆t + η
µ

(6)

is the effective elastic viscosity. η is the prescribed fluid viscosity
and µ the shear modulus.
In the finite element expression for viscoelasticity (5), K are finite el-
ement matrices dependent on either λ or ηeff , and F and Rt are the
finite element matrices representing forcings due to gravity and elasti-
cally stored stresses.

Fig. 1: The response of
a Maxwell viscoelastic model
to an applied stress. Top to
bottom: The material initially be-
haves elastic, shown by the shorten-
ing of the spring. The viscous com-
ponent then activates and becomes
the dominant response. Adapted
from [4].

5. Conclusions and Outlook

Several benchmarks have successfully been performed and the viscoelas-
tic implementation can be used to test the influence of elasticity on
subduction evolution. A set-up by [5] will be used to study the
influence of elasticity on unbending of the subducting slab in
the mantle (Fig. 2).

Fig. 2: A subduction set-up from [5].
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3. The effective elastic viscosity ηeff

The occurrence of the effective elastic viscosity instead of the fluid viscosity in the finite element equation has
a significant influence on the model results.

The finite element equation (5) for the viscous case has Rt = 0 and uses the fluid viscosity K(η) instead
of the effective elastic viscosity K(ηeff). Since the effective elastic viscosity depends on the used time
step and shear modulus, it differs from the fluid viscosity. Thus its use has a significant effect on material
behaviour. (Fig. 3).
When looking at the inset in Fig. 3 the influence of the time step on a prescribed lithosphere/mantle system
when using the effective elastic viscosity becomes clear.

•Upper case: It is evident that the lithosphere and mantle now have similar effective elastic viscosities
and will therefore behave alike. This is in stark contrast to the three orders of magnitude difference
which was initially prescribed.

•Bottom case: the viscosity difference is larger, but still an order of magnitude smaller than initially
prescribed.

Fig 3: The effect of the time step (x-
axis) on the effective viscosity. A shear
modulus of 1010Pa has been used. Different pre-
scribed fluid viscosities are plotted by different
lines.
The inset shows the effect of the choice
of the time step for a specific litho-
sphere/mantle case:

• The viscosities on the left are the prescribed
fluid viscosities (used in a viscous model).

• The viscosities on the right are the effective
elastic viscosities which are used to solve for
the velocity field in a viscoelastic model.

The effect of the effective elastic viscosity is also visible in Fig. 4. The prescribed fluid viscosities indicate a
sturdy beam in a weak medium. When looking at the effective elastic viscosity, the beam is now weaker than
the medium. This will alter the outcome significantly compared to the case using the fluid viscosities.

4. Benchmarking the elasticity implementation

A benchmark done by [4], the sinking beam benchmark, is performed to test the implementation of elasticity.

•An unstressed beam is placed in a medium and attached to the left wall.

•A gravity of gy = 10m/s is applied to the domain causing the beam to bend.

•The gravity is set to zero after 20 Kyrs, resulting in a return of the beam to its original position due to its
elastic properties

Fig. 4: The results of the
sinking beam benchmark.
From left to right:

1. The original configuration of
the slab.

2. The shape of the slab after
20 Kyr.

3. The return of the slab to its
initial position after setting
the gravity field to zero.

The evolution of the sinking beam through time is shown in Fig. 4. The beam initially bends under the
influence of gravity after which it returns to its original position when gravity is set to zero.
The maximum velocity in the domain is given in Fig. 5. The results are in agreement with those obtained by
[4], therefore this benchmark has been performed successfully.

Fig. 5: The maximum
velocity as a function of
time. After 20 Kyr, the grav-
ity is set to zero and the beam
returns to its original position.
It can be seen that the maxi-
mum velocity slowly converges
to zero. The results of the code
developed are smoother than
the results from [4].


