### January 2016

# **Turning the tide:** estuarine bars and mutually evasive ebb- and flood-dominated channels

Jasper Leuven, Lisanne Braat, Steven Weisscher, Maarten van der Vegt, Laura Bergsma, Anne Baar, Maarten Kleinhans

## **Problem definition**

No descriptive taxonomy and forecasting model for perpetually changing and interacting channels and shoals formed by ebb and flood currents in estuaries.

- Are bar dimensions explained by width-depth ratio as river bars?
- Is the apparent stability of ebb- and flood channels explained by the inherent instability of symmetrical channel bifurcations as in rivers?

## Ebb- and flood-dominated channels

- Mutually evasive channels
- Channels often end in shoals
- Periodic behaviour?





## Methods

- Remote sensing data of bars in estuaries
- Linear stability model for tidal (and river) bar dimensions
- Numerical modelling (Delft3D)
- Experiments in a novel tidal facility: the Metronome



## Measured bar dimensions

- Bar length/width has universal ratio in rivers and estuaries
- **Complex bars are amalgamated elongated bars** with ebb/flood-dominated channels

Estuaries

## Bar theory compared to measurements

- Theories: Schramkowski & al. (2002), Seminara & Tubino (2001), and Struiksma et al. (1985) for rivers
- Their hypotheses: bar braiding scales best with width/depth ratio; bar length determined by tidal excursion length (peak velocity)
- Our findings: bar length scales best by estuary width; braiding index also depends on width/depth ratio; secondary effect of tidal flow velocity
- Bar height from bathymetries approximates average water depth



## **Pilot scale-experiments**

By tilting the flume, ebb and flood flows move the sand all along the experimental estuary, just like in nature.



Dimensions: 20 m long, 3 m wide



#### Experiment: 0.01 m/m slope, 30 s period





## **Channel-shoal interactions**

- Mutually evasive ebb- or flood-dominated channels ubiquitous in all conditions with mobile sediment
- Two styles of formation:
- 1. Channel cutoff through ebb-dominated bend

2. Channel forms U-shaped bar, which is sharpened by the opposite current bifurcating around it

- System width determines braiding index
- Flood channels form U-shaped bars; more so when sourced by scouring channels
- Some flood channels are chute cutoffs
- U-shaped bars are channel termini; direction depends on / causes flood/ebb dominance?



## A look forward

- How can we predict bar dimensions?
- Are similar results found for experiments and models as for natural systems?
- What drives the dynamics of channels and shoals, such as the occurrence of mutually evasive ebb- or flood-dominated channels?

## Universiteit Utrecht

**Faculty of Geosciences** 

j.r.f.w.leuven@uu.nl m.g.kleinhans@uu.nl

### Numerical modelling

From idealised scenarios in Delft3D (3m amplitude):

- How do bar patterns relate to estuary shape?
- Scale bar dimensions with estuary dimensions and/or tidal properties?









Jasper Leuver



PI: Maarten Kleinhans