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e With coarser spatial resolution, simulated water depth tends to deviate stronger from the observations. schematized finely.
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Figure 1: Locations of observation stations used for model validation as well as different schematizations/runs of the Elbe
Basin in Delft3D FM: (a) n400; (b) d400; (c) c800; (d) r_400; (e) r_800; and (f) r_1600.

central in model set-up and determined beforehand.

e Differences between schematizations increases at upstream locations due to higher probability of _ _ L
» Absence of dikes in model schematizations may strongly

coarser cells. _
Run Name n_400 d_400 c_800 r 400 r 800 r 1600 |mpact OUtpUt accuracy.
Min. Cell Size [m] 400 400 3800 400 300 1600 _ _ ] i
Max. Cell Size [m] 1600 3200 1600 400 800 1600 o Water depth dynamics at locations close to the model boundary are strongly influenced by the input
Table 1: Properties of different Delft3D Flexible Mesh schematizations used in the study. signal, in particular for models with coarse spatial resolutions due to less attenuation potential.
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