Information about 100 eco-engineering species was collected from literature and a database http://eol.com with a:
- Genus, species, taxonomic group
- Functional group: stabilisers, destabilisers
- Min, opt, max for elevation/depth, salinity, flow velocity, mud content preference
- Size, growth rate, abundance, number of seeds, dispersal potential, generation time

From environmental factors we predicted spatial distribution of species.

Morphological data
- Channel planform was visually recorded in Google Earth.
- We compared estimations of depth zones based on estuary outline with measurements from bathymetry (Leuven et al., subm).
- Salinity was predicted with Savenije (1993) and Brockway (2005).

Towards Answers
- Finding distributions and biomasses of stabilisers and destabilisers in an estuary gradient
- Finding the correlation among the species distribution, planform shapes, and shoal patterns in different estuaries
- Finding out if stabilisers confine the estuary over time
- Finding out if destabilisers make estuaries deeper

Future work
- Add flow velocity as an environmental stressor of species distribution and as proxy for substrate type
- Add biomass for ‘ecoengineering potential’ of the species into the calculation

Conclusions
- Proportion of stabilising/destabilising species in estuary gradient shows increase in stabilisers going from estuary mouth to fresh water
- Most stabilisers settle above high water level and destabilisers below