Global water marginal cost curves to battle the future water gap

Menno Straatsmaa, Peter Droogersb, Johannes Hunink1, Joost Buitink2, Derek Karssenberga, Edwin Sutanudjaja3, Rens van Beek4, Marc Bierkensa, d

a Utrecht University, b FutureWater Wageningen, c FutureWater Cartagena, d Deltares, corresponding author m.w.straatsma@uu.nl

Introduction
Water scarcity affects a major part of the globe, and is expected to increase significantly until 2100 as a result of climate change and socioeconomic developments. Yet, global projections are unavailable on the effectiveness and costs of adaptation measures to close the future water gap under global change. Here, we present water marginal cost curves under two climate and socio-economic scenarios with maximum contrast for the 21st century: RCP2.6/SSP1(s1) and RCP8.5/SSP5(s5).

Methods
We coupled a global hydrological model to a water demand and redistribution model (Fig. 1), and forced them with five General Circulation Models (GCMs) to assess the future water gap for 1604 water provinces (Fig. 2) covering the global land mass. Subsequently, we determined the water gap reduction from adaptations.

Results
The current and future water gap, based on sustainable exploration of surface and groundwater, showed hotspots in the USA, India, and China (Fig. 3). The total annual water gap in the period 2006 – 2025 increased gradually towards the end of the century (2080-2099) for the s1 scenario, but even more for the s5 scenario (Fig. 3).

The envelope of the global annual water gap (km3) showed large differences between 2006 and 2099 under the two most extreme climate and socioeconomic scenarios (Fig. 4, 5). The four adaptation options were unable to close the water gap globally. Adaptations consisted of 1. improving the water efficiency of agriculture (Imp.Agr.), 2. Imp.agr combined with increasing the supply by increasing the reservoir capacity (Inc.Sup.), and 3. Inc.Sup plus a reduction in the water demand (Red.Dem.).

The water marginal cost curves (Fig. 6) indicate the extent to which the water gap can be closed with the current selected adaptation options. For s1, the gap can only be closed in South America, but large gaps remain in other continents. For s5, around 50% of the water gap can be closed with these measures. Already for the current adaptation measures, a significant fraction of the GDP is required, even for s1 (Fig. 7).

Conclusion
We found distinct global effects on the water gap due to climate and socioeconomic projections after 2045, and we demonstrated the impossibility of water gap closure with either hard or soft measures, when minimum river flows should be maintained, under growing domestic, industrial and agricultural water demands. The results provide important input to the discussion on climate change adaptation funding. Especially for developing economies, these adaptations limit further growth.