Interactive effects of fire and experimental warming on high-altitude grasslands in South Africa

Mariska te Beest, M 12, Thembeka Mvelase, 3, Michelle Tedder, M 3 & Susan J. van Rensburg2

1Copernicus Institute for Sustainable Development, Utrecht University, The Netherlands, 2 South African Environmental Observation Network, South Africa, 3Grassland Science, University of KwaZulu-Natal, South Africa

Introduction

- Tropical grassy biomes (C4 grasslands and savannas) occupy large parts of the world and are increasingly under threat from human population growth, agricultural expansion, alien species invasions, native woody encroachment and climate change (Parr et al. 2014).
- One of the greatest current threats to these grassy biomes is CO2-centric climate-change mitigation programs that promote the wide-scale planting of trees in afforestation programs (Wulff et al. 2015).
- A major cause of this threat is that grassy biomes are often regarded as degraded forests and that inherent ecosystem drivers such as fire and herbivory are disregarded (Wulff et al. 2015).
- Fire is a major driver of the functioning of grassy biomes (Bond et al. 2005, Archibald et al. 2005), but we have little understanding of how fire regimes will change due to climate change.
- Climate change scenarios for southern Africa predict higher temperatures and more variable precipitation against a background of rising levels of atmospheric CO2 (Midgley and Bond, 2015).
- This will alter vegetation indirectly via altered fire regimes, but also directly via elevated levels of atmospheric CO2 and rising temperatures.
- Elevated CO2 favours C4 plants with their CO2-limited photosynthetic pathway (Butterworth et al. 2012), whereas higher temperatures favours C3 grasses with their higher water-use efficiency (Morgan et al. 2011). Effects of temperature are predicted to be stronger at higher elevations (Sundqvist et al. 2013).
- We know little about the interactive effects of different fire regimes and increasing temperatures on grassy biomes in southern Africa. This knowledge is essential to adapt to a warmer future with altered fire regimes.

Objective

Develop a long-term temperature-manipulation experiment in Africa, where such experiments are scarce and data are lacking.

Determine how fire regimes and elevated temperature interactively affect high-altitude C4 grasslands in South Africa

Research questions

- How do C3 and C4 plants differ in their response to experimental warming under different fire regimes?
- How does experimental warming affect plant productivity and composition under different fire regimes and how does this feed back to altered biophysical climate-vegetation interactions?
- How does experimental warming affect soil respiration and microbial activity under different fire regimes and how does this feed back to altered biogeochemical cycles?

Methods

- We use a unique long-term fire-manipulation experiment in the uKhahlamba Drakensberg Mountains in South Africa, the Broxborn trial.
- Running since 1980 this fire experiment consists of annual, biennial, quinquennial and no-burn treatments in a full-factorial randomized block design. Each treatment is replicated four times in 25x25m plots.
- In January 2017 we established transparent hexagonal open-top warming chambers with an inside diameter of 1.5 m in each fire treatment, following the ITEX design (Marion et al. 1997). Warmed plots were paired with a 1x1m control. The warming chambers will be removed on the days of the planned experimental fires.
- We monitor air- and soil temperature, soil moisture, plant species composition, biomass, cover and leaf area index, as well as decomposition using the Tea Bag Index, soil respiration and microbial biomass and composition.

Preliminary results

- During the first 6 months the warming treatments increased mid day air temperatures by 4 °C and average daily air temperatures by about 1 °C.
- Open-top chambers increased soil temperatures by about 1 °C.
- The different fire treatments differ in their warming effect, which is most likely due to differences in the density of the grass sward.
- Decomposition rates show differences between fire treatments, but it is too early to pick up any effect of the warming treatments.

Temperature-manipulation experiments in Africa are scarce. We hope this newly established long-term experiment can act as a platform for collaborations.

Conclusions

- During the first 6 months the warming treatments increased mid day air temperatures by 4 °C and average daily air temperatures by about 1 °C.
- Open-top chambers increased soil temperatures by about 1 °C.
- The different fire treatments differ in their warming effect, which is most likely due to differences in the density of the grass sward.
- Decomposition rates show differences between fire treatments, but it is too early to pick up any effect of the warming treatment.

Mariska te Beest: m.tebeest@uu.nl

References

- Wulff NT, Bond WP, Stevens N, Trollope WS. 2012. Increased tree densities in South African savannas: C4 grasslands and savannas occupy large parts of the world and are increasingly under threat from human population growth, agricultural expansion, alien species invasions, native woody encroachment and climate change (Parr et al. 2014).
- Wulff NT, Bond WP, Stevens N, Trollope WS. 2012. Increased tree densities in South African savannas: C4 grasslands and savannas occupy large parts of the world and are increasingly under threat from human population growth, agricultural expansion, alien species invasions, native woody encroachment and climate change (Parr et al. 2014).
- Wulff NT, Bond WP, Stevens N, Trollope WS. 2012. Increased tree densities in South African savannas: C4 grasslands and savannas occupy large parts of the world and are increasingly under threat from human population growth, agricultural expansion, alien species invasions, native woody encroachment and climate change (Parr et al. 2014).
- Wulff NT, Bond WP, Stevens N, Trollope WS. 2012. Increased tree densities in South African savannas: C4 grasslands and savannas occupy large parts of the world and are increasingly under threat from human population growth, agricultural expansion, alien species invasions, native woody encroachment and climate change (Parr et al. 2014).