

NEWTON SOLVER STABILIZATION FOR STOKES SOLVERS IN GEODYNAMIC PROBLEMS

Fraters M. R. T. (1), Bangerth W. (2), Thieulot C. (1), Glerum A. (1,3), Spakman W. (1,4) (1) DEPARTMENT OF EARTH SCIENCES, UTRECHT UNIVERSITY, NETHERLANDS, (2) DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, U.S.A, (3) GFZ GERMAN RESEARCH CENTER FOR GEOSCIENCES, POTSDAM, GERMANY, (4) CENTRE OF EARTH EVOLUTION AND DYNAMICS (CEED), UNIVERSITY OF OSLO, NORWAY

ABSTRACT

- 1. We have implemented a Newton solver for ASPECT (Kronbichler et al., 2012)
- 2. We only use solver libraries to solve linear systems (no Trilinos NOX or PETSC SNES)
- 3. We have implemented line search and oversolving-prevention ourselves
- 4. We found that the Jacobian is not always Symmetric Positive Definite (SPD)
- 5. We force the Jacobian to be SPD in a cheap and optimal way
- 6. This allows for more complex rheologies to be used with a Newton solver
- 7. Our Newton solver also works for compressible models

RESTORING SYMMETRY FOR PRECONDITIONING

Approximate Jacobian with $J_k^{up} \approx B^T$ and

$$(J_k^{uu})_{ij} \approx (A_k)_{ij} + \left(\varepsilon(\varphi_i^u), \left(\frac{\partial\eta(\varepsilon(\boldsymbol{u}_k), p_k)}{\partial\varepsilon} : \varepsilon(\varphi_j^u)\right)\varepsilon(\boldsymbol{u}_k)\right) + \left(\varepsilon(\varphi_j^u), \left(\frac{\partial\eta(\varepsilon(\boldsymbol{u}_k), p_k)}{\partial\varepsilon} : \varepsilon(\varphi_i^u)\right)\varepsilon(\boldsymbol{u}_k)\right)$$

= $(A_k)_{ij} + \left(\varepsilon(\varphi_i^u), E^{\text{sym}}(\varepsilon(\boldsymbol{u}_k))\varepsilon(\varphi_j^u)\right)$

where $E^{\text{sym}} = \frac{1}{2} \left(E_{mnpq} + E_{pqmn} \right)$ and $E(\varepsilon(\boldsymbol{u}_k))_{mnpq} = \left[2\varepsilon(\boldsymbol{u})_{mnpq} \right]$

Restoring Positive Definiteness

The positive definiteness of the Jacobian is determined by tensor *H*:

$$\begin{split} J^{uu} &= \left(\varepsilon(\varphi_i^u), 2\eta(\varepsilon(u))\varepsilon(\varphi_j^u) \right) + \left(\varepsilon(\varphi_i^u), E^{\mathrm{sym}}(\varepsilon(u))\varepsilon(\varphi_j^u) \right) \\ &= \left(\varepsilon(\varphi_i^u) \underbrace{ \left[2\eta(\varepsilon(u))I \otimes I + E^{\mathrm{sym}}(\varepsilon(u)) \right]}_{=:H} \end{split}$$

We can force tensor *H* to be SPD by scaling E^{sym} with a factor α :

$$H^{\rm spd} = 2\eta(\varepsilon(u))I \otimes I$$

with $0 < \alpha \leq 1$. If $\alpha = 0$ the Jacobian will always be SPD, but to have optimal convergence we want α to be as large as possible (max one). It can be proven (Fraters et al., in prep) that the optimal value for α is (where $a = \varepsilon(u)$ and $b = \frac{\partial \eta(\varepsilon(u), p)}{\partial \varepsilon}$):

$$\alpha = \begin{cases} 1 & \text{if } \left[1 - \frac{2\eta(\varepsilon(\boldsymbol{u}))}{\left[1 - \frac{b:a}{\|a\| \|b\|}\right]^2 \|a\| \|b\|} & \text{otherwise} \end{cases}$$

PROBLEM STATEMENT

We are interested solving the Stokes equations:

$$abla \cdot \left[2\eta \left(\dot{\boldsymbol{\epsilon}}(\boldsymbol{u}) - \frac{1}{3} (\nabla \cdot \boldsymbol{u}) \boldsymbol{1} \right)
ight] + \nabla p =
ho \boldsymbol{g} \qquad \text{in } \Omega,$$
 $abla \cdot \left(\rho \boldsymbol{u} \right) = 0 \qquad \text{in } \Omega,$

The weak form of the Newton linearisation:

$$\begin{pmatrix} J_k^{uu} & J_k^{up} \\ J_k^{pu} & 0 \end{pmatrix} \begin{pmatrix} \delta U_k \\ \delta \bar{P}_k \end{pmatrix} = \begin{pmatrix} F_k^u \\ F_k^p \end{pmatrix}$$

where for the incompressible case the Jacobian elements are (ignoring the pressure scaling):

$$\begin{aligned} \left(J_k^{uu}\right)_{ij} &= \left(A_k\right)_{ij} + \left(\varepsilon(\varphi_i^u), 2\left(\frac{\partial\eta(\varepsilon(\boldsymbol{u}_k), p_k)}{\partial\varepsilon} : \varepsilon(\varphi_j^u)\right)\varepsilon(\boldsymbol{u}_k)\right) \\ \left(J_k^{up}\right)_{ij} &= B_{ij}^T + \left(\varepsilon(\varphi_i^u), 2\left(\frac{\partial\eta(\varepsilon(\boldsymbol{u}_k), p_k)}{\partial p}\varphi_j^p\right)\varepsilon(\boldsymbol{u}_k)\right), \\ \left(J_k^{pu}\right)_{ij} &= B_{ij}. \end{aligned}$$

This is in general neither Symmetric, nor Positive Definite, which can be very bad for solvers.

$$mn \, rac{\partial \eta(\varepsilon(\boldsymbol{u}),p)}{\partial \varepsilon_{pq}} igg].$$

 $+ \alpha E^{\text{sym}}(\varepsilon(u))$

BENCHMARKING THE NEWTON METHOD

DEMONSTRATING THE WORLD GENERATOR

The next step is to apply the Newton solver to complex 3D geodynamic settings, such as constructed by our World Generator (Fraters et al., in prep), which generates inititial conditions with little input:

subsection Initial condi set Model name = world subsection World gener set Minimum parts pe set Minimum distance set Refinement thres	ions generator tor degree = 5 points = 1e-5 old radius = 50				
set Surface objects	<pre>\ # Name obj Modul North America Conti South America Conti North Atlantic Ocean Caribbean Ocean Ocean South Trench Subdu North Trench Subdu</pre>	e name Interpolation nental Plate nental Plate nic Plate nic Plate nic Plate nic plate Monotone Spline nicting plate Monotone Spline	<pre>Coordinates of the corner -83:13,-82:14,-76.5:21,-79 -62.5:13,-62.5:15.5,-57:10 -76.5:21,-75:24,-73:26,-79 -83:0,-82:14,-76.5:21,-74 -63.5:18.5,-62.5:15.5,-62 -74:23,-73.5:23.25,-72.5:10</pre>	<pre>points of the polygon 5:24,-73:26,-72:27,-83:27; \ 6,-57:13; \ 2:27,-57:27,-57:13,-62.5:13,-(:23,-72.5:23.5,-71:23,-64:20,5:13; \ 23.5,-71:23.25,-67.75:21.875,-</pre>	52.5:15.5, -63.5:18.5 -66.9375:2
<pre>subsection Continent set Parameters = \</pre>	l plate # Name object Temp. mod. Co North America Linear Lay South America Linear Con	mp. mod. ers; \ istant			
subsection Linear set Temperatur	parameters = ∖ # Name object North America South America	depth Bottom temperature 150e3 ;∖ 100e3			
end					
subsection Oceanic p set Parameters = ∖	ate # Name object Temp. mod. North Atlantic Plate model Caribbean Ocean Plate model	Comp. mod. Coordinates of r None -64:20,-61:23,-60 None -90:0,-91:1	ride points 0:22,-57:25; ∖		
subsection Plate m set Temperature end	del arameters = \ # Name Object North Atlantic Caribbean Ocean	depth B. temp. spreading \ 95e3 1.3e-2; \ 95e3 1.3e-3	vel.		
end					
subsection Subductin set Parameters = ∖	plate # Name object Temp. mod. C North Trench Plate model N South Trench Plate model N	omp. mod. intpl. Start dept lone 0 lone 0	th max depth seg. length 1000e3 150e3, 1000e3 150e3,	<pre>segements 200e3,50e3,50e3,100e3,400e3 180e3</pre>	thickness 100e3,100 100e3
set Plate detail p	rameters = \ # Name object be North Trench 1: North Trench 5:	tween coords length segments 3 150e3,200e3,50e3 6 150e3,200e3,50e3	thickne 3,50e3,100e3,400e3 100e3,1 3,50e3,100e3,400e3 100e3,1	ss segments 00e3,100e3,100e3,100e3,100e3 00e3,100e3:0,0,0:100e3,100e3	angle seg 0:30,30:0 0:30,30:0
subsection Plate m set Temperature	del arameters = \ # Name object North Trench South Trench	<pre>B. temp density plate vel. 3300 1.3e-2; \ 3300 1.3e-2</pre>			
end end end					
end					
1 1000 1000 100 100 100 100 100 1000					
		and the second second	(and a second		
	Т				
2.731e+02 668.	4 1064	1459 1.854e+	-03		

Available features: different plate types, faults and variations in curvature and thickness within slabs.

-63.5:18.5,-64:20,-71:23,-72.5:23.5,-74:23; 62.5:15.5,-62.5:14,-62.5:0; \ 53125,-64.5:20.5,-64:20,-63.74:19.75,-63.5:18.

