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ABSTRACT PROBLEM STATEMENT

1.

We have implemented a Newton solver
for ASPECT (Kronbichler et al., 2012)

. We only use solver libraries to solve lin-

ear systems (no Trilinos NOX or PETSC
SNES)

. We have implemented line search and

oversolving-prevention ourselves

. The Jacobian is not always Symmetric

Positive Definite (SPD)

. We force the Jacobian to be SPD in a

cheap and optimal way

. This allows for more complex rheolo-

gies to be used with a Newton solver
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We are interested solving the Stokes equations:

-V |20 (&w - 5V w1) |+ Tp = pg in ©,

V-(pu) =0 in €2,

The weak form of the Newton linearisation:
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where for the incompressible case the Jacobian elements are (ignoring the pressure scaling):

(J]gu)ij — (Ak)z'j T (6(90?)’2(8"7(5(’;:)71%) : 6(@?))6(1}4&) 7

(517),y = B + (eto) 2 PP or) ey ).

(Jlfu)ij = Bij.

This is in general neither Symmetric, nor Positive Definite, which can be very bad for solvers.

Approximate Jacobian with J*» ~ B” and

()55 = (Any + (o0 (P o) etun) ) + (ste), (LR oot eun) )
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Where Esym — % (Emnpq + qumn) and E(e(uk))mnpq

RESTORING POSITIVE DEFINITENESS

The positive definiteness of the Jacobian is determined by tensor H:
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Nonlinar channel flow
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We can force tensor H to be SPD by scaling Y™ with a factor a: 105513 NZASnnne?teraﬂoﬁS S——
spd —_— Spiegelman et al. brick
H™ = 2n(e(u)I @ I + aE7(e(u)) Strain rate s o

with 0 < a < 1. If a = 0 the Jacobian will always be SPD, but to have optimal convergence we
want a to be as large as possible (max one). It can be proven (Fraters et al., in prep) that the

optimal value for ais (where a = ¢(v)and b = 22={2)1.2)):
. b:a 2
1 if [1— it | lallllbll < 2n(e(w))
@ = i”(g(uQ)) otherwise.
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DEMONSTRATING THE WORLD GENERATOR

We are now testing the Newton solver on complex 3D geodynamic settings, such as con-
structed by our World Generator (Fraters et al., in prep): le10
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The Newton solver without stabilisation is:

e fast;

e prone to numerical breakdowns;

e very senstitive to the preciece tweaking

of parameters such as minimun linear
tolerance, line search iterations, etc.
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The Newton solver with stabilisation is:
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e faster than Picard, slower than without
stabilisation leg]

Newton
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e almost immune to numerical break-
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e very insensitive to tweaking of these pa-
rameters.



