Introduction

Sustainability science has both **disciplinary depth** and **interdisciplinary breadth**.

Systems Analysis is central to sustainability science.

Interdisciplinary research is on the rise, although it may take time to have an impact.

Some fields and geographies are more interdisciplinary.

How interdisciplinary are you?

[Screenshot of a news article titled: How interdisciplinary are you?
http://www.nature.com/news/how-interdisciplinary-are-you-1.18362](http://www.nature.com/news/how-interdisciplinary-are-you-1.18362)

Sustainability science has emerged as a key discipline that embraces both disciplinary depth and interdisciplinary breadth.

The challenge is to design University courses that convey both properties without sacrificing either of them.

Key competencies for Masters programs in Sustainability

Sustainability programs aim at achieving three types of competencies:

1. **Intellectual**
2. **Interacting**
3. **Self development**

Our course is presented together with a theories course, and we focus on:

1. **Intellectual competencies**
 1.1. Analyzing, evaluating and crafting future
 1.2. Systems and analytical thinking
 1.3. Research and ICT skills
2. **Interacting competencies**
 2.1. Practical skills
 2.2. Communicative skills
3. **Self-development competencies**
 3.1. Normative competency

Course Objectives

1. **Knowledge**
 - **Sustainability Perspectives**
 - Introduction of SD
 - Themes
 - Solutions
 - **Modelling and Indicators**
 - Principles
 - Themes
 - Examples

2. **Key lessons**
 - Mathematics were challenging for a part of the students, but still doable
 - Learning curve was steep
 - Students had higher experience with Excel than other modelling platforms
 - Excel exercise received the highest and lowest grades, and students found it time consuming but also indicated that they learned the most
 - Netlogo was the favorite exercise, because plug-and-play software was perceived as better to bring conceptual models to mathematical formulations

Conclusions

1. **Relate to students background**
2. **Use of-off-the-shelf software**
3. **Key challenges: concepts of systems analysis and the applied mathematics behind it**
4. **The goal is to demonstrate process**
5. **Can be complemented with programming**
6. **Learning while doing**