The LUE data model

for agents and fields

Kor de Jong (k.dejongl@uu.nl), Oliver Schmitz, and Derek Karssenberg - Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands

The LUE data model makes it convenient to
write efficient environmental modeling
software in which both agents and fields are
manipulated

Data models are used in software to describe how information is organized.
Popular used data models in environmental modeling software include the raster
data model for representing continuous varying spatial information, and the
vector data model for representing discrete objects located in space. In agent-
based modeling, agents are often represented by a general object data model,
where the modeler has to define which properties make up a certain class of
agents.

We work on the LUE conceptual data model for representing agent- and field-
based data, and its current implementation in a physical data model (a dataset
format). The intended audience of LUE is developers of environmental modeling
software.

Agents, includin
W - ‘7 £~ ﬁegid agents 0
&> _—> Fields
Relations between
— agents and fields

Area of interaction
E between agents and
flelds

Requirements

v Capable of representing all kinds of data used in environmental modeling,
e.g..
v Data located in time and/or (3D) space
v Data that varies continuously through time and/or space
v/ Data that varies spatial location through time
v Linked data: networks, relations

v Allow for an efficient implementation (locality of reference, support for parallel
/0)

Conceptual data model

Phenomenon: Collection of related property-sets, e.g.:
properties of individual birds

Property-set: Collection of properties sharing a time/space
domain

Domain: Information about when and where something 'is’,
e.g.: location through time of individual birds

Property: Location and variation of a characteristic through
time and space

Value: Magnitude of a property, e.g.: speed of individual birds

Item: |dentifies an individual/object/agent

phenomenon

property-set

property

The domain and value contain information for all items in the property-set.

Physical data model

Implementation of concrete conceptual data models in HDF5. Some
characteristics:

v All model data in a single, portable file

v Support parallel I/O

v C++ API (C++14) and Python API (with support for Numpy arrays)
v Open source software (code available on Github)

Example: Elevation of terrains

To represent one or more elevation fields we
can store the same information traditionally
stored in rasters, but in a slightly different way.

The extent of the fields is stored in the
domain. This domain can be shared by =R
multiple properties. The cell values of
each field are stored in the
value. The property
aggregates the domain and
value. Information about the
discretization of each field's values is
stored in a separate property. This
discretization property is referenced by the raster property.

discretization

\/All 1e
/aluc
/

space domain:
2D box per item

Example: GPS tracks of birds

A GPS track is a point in space that changes
location through time. For example, birds
carrying a GPS can record such points, tracks
along with properties like speed and
temperature. In LUE, the location in temperature
time and space is stored in the
domain. All properties
that are recorded by the
same GPS device share
the same domain, so are
stored in the same
property-set.

birds

value:
1D array per item

domain

time domain: space domain:

3D point per time point per item

time points per item

Current status

The implementation of the LUE dataset format is work in progress. We are
focusing on the following initial set of concrete conceptual data models:
v Constant size of item collection

v Scalars

v’ Rasters

v Stationary temporal rasters

v Mobile points (space-time paths, GPS tracks)

y

Opportunities

Given the LUE data model the following becomes possible (examples):

v Representing temporal varying discretization. The change in discretization
can happen at different time points than the change in property value.

v Storing fields of different resolution in the same property-set. This can be
convenient to speed up certain parts of the model.

v Storing and accessing field and agent data in a uniform way.

v For the same phenomenon (with the same set of items), we can now store
properties with very different domains.

v A single high level API for data that is organized very differently internally. The
details are stored where they belong: in the lower levels of the software stack.

More info

de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and
demonstration of a data model to integrate agent-based and field-based
modeling. Environmental Modelling and Software.
http://dx.doi.org/10.1016/j.envsoft.2016.11.016

de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue

PCRaster R&D Team, 2000-2017. PCRaster Environmental Modelling Software,
http://www.pcraster.eu

The HDF Group, 2000-2017. Hierarchical data format version 5,
http://www.hdfgroup.org/HDF5

Create a new dataset and write a number of fields as rasters with random
discretizations and random cell values.

import numpy

import lue

Shortcut to sub—module
omnipresent = lue.constant _size.time.omnipresent

Create dataset

dataset = lue.create _dataset(”some_project.lue”)

areas = dataset.add phenomenon(”areas™)

extents = omnipresent.create property set(areas, ’extents”)
nr_items = 100

Add a discretization property containing nr_rows/nr_cols for each raster

value _shape = (2,)

value_type = numpy. uint32

discretization = omnipresent.same _shape.create property(extents, “discretization”,
value_type, value_shape)

raster_ shapes = numpy.arange(start=1, stop=nr_items « 2 + 1, dtype=value_type) \
.reshape ((nr_items, 2))

nr_cells = discretization.reserve(nr_items)

nr_cells[:] = raster_shapes

Add a property containing the raster cell values for each raster

rank = 2

value_type = numpy.int32

elevation = omnipresent. different_shape.create _property(extents, “elevation”,
value_type, rank)

values = elevation.reserve(nr_items)

for i in range(nr_items):
values[i][:] = (10 x numpy.random.rand(xraster_shapes|[i])).astype(value_type)

Link discretization to property
elevation.discretize _space(discretization)

