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Metamorphic soles - how can they help to better constrain the physics of subduction initiation?

Prior to the formation of (U)HP rocks in subduction zone settings comes the evolution of a subduction zone from the start as shallow thrust fault to a slab
that cooled its mantle surroundings reaching depths beyond 100km. Where and how subduction initiates within oceanic domains remains debated. Met-
amorphic soles, few-hundred-meters thick sequences of strongly foliated metabasites and pelagic sediments found below the mantle section of typically
supra-subduction-zone (SSZ) ophiolites, record high (up to ~¥850°C) metamorphic temperatures at pressures up to 10-15 kbar (Jamieson, 1986; Dilek and
Whitney, 1997; Hacker and Gnos, 1997; Wakabayashi and Dilek, 2000; Guilmette et al., 2008; Myhill, 2011). These metamorphic conditions are uncom-
mon in normal subduction zones and are thus interpreted to reflect (intra-oceanic) subduction initiation, whereby soles represent the volcano-sedimenta-
ry top of a nascent subducting slab that accreted to the hot overriding peridotites.

40Ar/39Ar hornblende ages of metamorphic soles invariably overlap with overlying SSZ ophiolites’ crustal crystallization ages, suggesting that spreading
and sole cooling are causally linked. However, the time between the inception of subduction and sole cooling is generally assumed to be short, but re-
mains unquantified.
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3 What is the time difference between formation and cooling of the metamorphic sole?
l Case study: petrology and geochronology of Tethyan SSZ ophiolites
Pinarbasi metamorphic sole - Turkey Vourinos - Greece

Lu-Hf in garnet: prograde metamorphism
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U-Pb in zircon: peak metamorphism
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Figure 3. (A) Concordia diagram displaying U/Pb ages for zircon

grains from the Pinarbasi metamorphic sole. Ellipses indicate the 2 Figure 5. Photomicrographs, Ca and Mg element maps of garnet grains,

o uncertainty. MSWD = mean square of weighted deviates. (B) CL and Lu-Hf garnet age of lower amphibolite facies garnet-micaschists (E
images of zircon grains used for dating; grainsize 90-120 um. and F) from Pindos, Greece.
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Results demonstrate that the highest grade rocks from the Pinarbast metamorphic sole (Turkey) started to undergo metamorphism around 104 Ma (Lu-Hf
garnet chronology), earlier than new c. 94 Ma U-Pb zircon ages and published 40Ar/39Ar cooling ages of about 90-94 Ma. Lu-Hf garnet chronology on Ju-

rassic soles in northern Greece provides ages around 169 Ma for the lower grade garnet-micaschists of the sole at Pindos, and ages of c. 171 Ma from the

highest grade garnet-amphibolites, and c. 169 Ma for the lower grade garnet-micaschists in Vourinos, both synchronous with published 40Ar/39Ar cooling
ages on hornblendes.

The difference between the formation and cooling of the metamorphic sole and thereby the mechanism of sole
formation and exhumation, may vary for diffrent tectonic settings where metamorphic soles occur.
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