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1: Rationale
A volumetric resource assessment of geothermal energy
or any other form of geothermal exploration requires
knowledge on the subsurface temperature distribution.1
As part of the EU FP7-funded Integrated Methods for
Advanced Geothermal Exploration (IMAGE) project, we
combine large-scale geophysical models with regional-to-
local scale geothermal data to develop an improved thermo-
mechanical model of the European lithosphere.
Aims:
•More realistic a priori thermal properties
• Consistency between model boundary conditions and
temperature data

•Analyzing temperature sensitivity to parameter varia-
tions

•Quantifying uncertainties and identifying non-
conductive heat transfer

3: Thermal Model and
Properties

As a starting point for our prior model we use an existing
crustal geometry with different lithotypes for the upper and
lower crust2 (fig. 1a). The sedimentary cover is differen-
tiated into lithotypes based on the surface geology3 (fig.
1b): e.g. unconsolidated, consolidated, siliciclastics, car-
bonates). Each sedimentary lithotype consists of a lithol-
ogy or a mixture of lithologies. Thermal properties are
assigned accordingly. The model has a horizontal resolu-
tion of ∼20 km and a vertical resolution of 250 m. Heat
transfer is limited to vertical conduction only, with the an-
nual mean temperature at the surface and the temperature
at the lithosphere-asthenosphere boundary (LAB fig. 1c)
- assumed to be 1200 ◦C - as upper and lower boundary
conditions. The thermal conductivity is iteratively updated
for temperature and pressure effects (fig. 1d: sediments,4
upper and lower crust,5 lithospheric mantle6,7).

2: Model Input
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Fig. 1: (a) Geometry and composition used for the model. Sediments,
upper crust, and lower crust are differentiated into lithological and rhe-
ological domains.2 (b) Sedimentary domains are defined on the base
of generalized surface geology models.3 (c) Thickness of the thermal
lithosphere2 that is used as the depth of the lower thermal boundary
condition.

2: Model Input

55

70

85

100

125

150

175

200

D
e
p
th

 b
e
lo

w
 g

ro
u
n
d
 l
e
v
e
l 
(k

m
)

(c)

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

De
pt

h
(k

m
)

A (μWm-3 )

0

20

40

60

80

100

120

1 1.5 2 2.5 3 3.5
TC (Wm  K  )

0

20

40

60

80

100

120

0 250 500 750 1000 1250
T (°C)

0

20

40

60

80

100

120

-0.5  -0.4  -0.3  -0.2  -0.1     0 0.1 0.2
Strength (GPa)

0

2

4

6

8

0 0.2 0.4 0.6

De
pt

h 
(k

m
)

Porosity

0

2

4

6

8

0 0.5 1 1.5 2 2.5
TC (Wm  K  )

Bulk

Matrix

Water

0

2

4

6

8

0 50 100 150 200 250 300
T (°C)

Comp. Ext.

LM
LC

UC
SED

-1 -1

-1 -1 

(d)
Fig. 1 continued: (d) (Top) Example 4-layer lithosphere profile with
thermal properties: A radiogenic heat production, TC (bulk) thermal
conductivity, temperature, and computed strength under conditions of
compression (-) and extension (+). SED = sediments, UC = upper
crust, LC = lower crust, LM = lithospheric mantle. (Bottom) Poros-
ity reduction of typical siltstone following Athy’s law of compaction.
The bulk thermal conductivity of sediments varies with depth due to:
(1) Porosity changes effecting the geometrical average of the thermal
conductivity of the rock matrix and the fluid phase (water). (2) The
temperature dependence of the thermal conductivity of the rock ma-
trix and water.8

4: Model Calibration
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Fig. 2: (a) Schematic workflow of model calibration using Ensemble
Smoother with Multiple Data Assimilation (ES-MDA).9 (b) Tempera-
ture data (x-axis) plotted against prior model temperatures (y-axis) (c)
Temperature data plotted against posterior model temperatures.
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Fig. 3: (a) Temperatures at 2 km of the prior temperature model. (b)
Temperatures at 2 km of the posterior temperature model after cali-
bration. (c) and (d) Model misfits plotted for the prior and posterior
model showing large misfits before calibration and reduced misfits af-
ter calibration. We use stochastic variation of thermal properties to
obtain an improved fit with these temperature observations. Posterior
thermal properties are therefore not necessary representing reality and
should be considered equivalent to the combined effect of heat trans-
fer processes and lithological differences. (e) Integrated strength of
the lithosphere estimated under transpressional (strike-slip) conditions
based on temperatures of the posterior mean model based on a fixed
strain rate of 10-15 s-1.
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6: Conclusion
• The conductive thermal field within the European litho-
sphere is regionally and locally disturbed by active tec-
tonic processes, volcanism, buoyancy-driven thermal
convection, and advective groundwater flow.

• Temperature observations are a product of the above de-
scribed processes and of lithosphere structure and com-
position that determine the thermal properties.

•With our approach, we stochastically vary thermal prop-
erties in order to obtain a fit with these temperature ob-
servations. Posterior thermal properties are therefore
not necessary representing reality and should be consid-
ered equivalent to the combined effect of heat transfer
processes and lithological differences.

• The thermal state of the lithosphere, rheology, and stress
regime control the integrated strength of the lithosphere
and determine the style of deformation. We have up-
dated strength estimates for Europe, in particular affect-
ing the upper part of the lithosphere.


