Time will tell: temporal evolution of Martian qullies and paleoclimatic implications
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Introduction Crater morphology types Gully size and morphology vs time Conceptual model

To understand Martian paleoclimatic conditions and the role of volatiles therein, the spatio-temporal Type 1: No LDM, no glacial landforms Type 3: LDM and glacial landforms
evolution of gullies needs to be deciphered. While the spatial distribution of gullies has been exten- AN NNVAN B Ry, . B e T e

sively studied, their temporal evolution is poorly understood. Given the widespread occurence of lati-
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tude-dependent-mantle deposits (LDM) and glacial landforms in gullied craters, we hypothesize that

RN
(@)
(@)

t = 1: Newly formed crater
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the temporal evolution of Martian gullies is strongly linked to ice ages.
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No LDM, No glacial landforms
LDM, No glacial landforms
LDM and glacial landforms

Objectives

(1) Investigate how time and associated climatic variations have affected gullies. t = 2: Gully formation
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new generation of alcoves

Mean alcove depth (m)
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(2) Provide a conceptual model for the temporal evolution of gullies. vt o SRR AN NG |/ i / 1
Fig. 2: Morphology of young craters. The gully-alcoves have a crenulated shape and cut into the upper crater rim, exposing 7 5 { | ;,f}
fractured and highly brecciated bedrock containing many boulders. (a) Gasa crater (HiRISE images ESP_014081_1440 and ! J '*" - 1}, “‘?
. . . . . . . . ESP_021584_1440). (b) Istok crater (HiRISE image PSP_006837_1345). (c) Galap crater (HiRISE image ESP_012549_1420). 2 | ; 4’ |
We obtain these objectives by comparing the size of gullies in 19 craters, extracted from HiRISE DEMs, T T =
. . . . . AL -1
and their morphology, with host-crater age obtained from crater counting on CTX images. 10
v Crater age (Myr) t = 3: LDM cover

d alcoves
s Fig. 5: Gully-alcove size as a function of crater age. (a) Crater age versus alcove volume. (b) Crater age versus mean alcove depth. The circles

Und m -I__)P’—Icoere ;Iopes are the best fit crater ages and the median backweathering rates per crater. Bars denote minimum and maximum crater age and the 10th
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14 ' ; o and 90th percentile alcove size of the measured gully-alcoves within each crater.

Study sites

= e = > 2 = Fig. 6: Conceptual model of the temporal evolution of gullies on Mars. (t=1) The highly-fractured and unstable walls of newly formed impact
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R e ey ¥ : 3 ot craters are prone to gully formation. (t=2) As a result, large gullies may rapidly form. Such gullies may typically cut into the crater rim. (t=3)
o 247 s e e e = g - _ v ; During high-obliquity periods the gullies may be covered by LDM deposits, which impedes further gully-alcove growth. Subsequently, gullies
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may reactive and transport the LDM deposits in the gully alcoves to the gully-fan until a new mantling episode commences. Gullies may expe- t = 4: Glacier modification
rience multiple repeats of these cycles. (t=4) During favorable obliquity periods glaciers may form on the crater wall removing or burying the

gully deposits, and forming a moraine deposit at the toe of glacier. (t=5) Following glacial retreat a smoothed crater wall and moraine deposits

remain. (t=6) New gullies may now form within the formerly glaciated crater wall. Such gullies typically have v-shaped and elongated alcoves

and do not extend to the top of the crater wall. The gullies may enlarge until there is another episode of LDM emplacement or glaciation.

t = 5: Glacial retreat
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t = 6: Gully formation
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of alcoves and glacial advances in Langtang crater.
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i. 4. Multil nefations
(a) Glacial extent. CTX image F10_039752_1419_XI_385142W. (b) Detail of the
crater slope, showing the crown of a former, now abandoned, alcove and young-
er smaller generations of alcoves. The crater slope is covered by a thick layer of
ice-rich material, as demonstrated by the shape of the youngest alcove incisions
and polygonal patterned ground on top of the crater wall. The new alcove incis-

| Lo 1 | eyl et £g es by more than 25 m into the crater wall. HiRISE image: ESP_023809_1415.

aga Rosé éfe; ' estern wall of D-cl)‘r.n.o'ni witph (c) Detail of the moraine deposits and the pitted terrain, which originates from

abundant gullies. Evidence for former glaciation is absent (HiRISE image: ESP_016714_2315). (b) Detail of gully-alcoves: sublimation till. HiRISE image: ESP_023809_1415.

the gully-alcoves in the right side of the images are covered by LDM deposits, whereas the gully-alcoves on the left side
of the image have been reactivated since the last episode of LDM emplaced and therefore these alcoves are largely to
210° E 240° W 270° W 300° W 330° W 30° E 60° E 90° E 120° E 150° E completely free of LDM deposits. (c) Raga crater (HiRISE image: ESP_014011_1315). (d) Detail of gully-alcoves in Raga

Fig. 1: Study crater locations. Background, color-keyed and relief-shaded, topography is from the Mars Orbiter Laser Altimeter (MOLA, red is high elevation, blue is low elevation). crater with softened topography and patterned ground.




