
1. Introduction  3.  Modelling azimuthal anisotropy 

Figure 4: Azimuthal anisotropy at several depths in the 
mantle from fundamental and higher mode Rayleigh wave 
phase velocities, showing fast anisotropic directions in red. 
The grayscale indicates the value of elastic parameter 𝐺𝑐. 
From Yuan & Beghein (2013). 

4. Results 
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Figure 5: Workflow for 
incorporating azimuthal anisotropy 
in the computation of synthetic 
normal mode spectra. Based on 
Beghein et al. (2008); Woodhouse 
& Deuss (2015) 

5. Outlook 

6. References & acknowledgements 

Azimuthal anisotropy can be expressed in 
terms of perturbations to the fourth-order 
elastic tensor. Surface waves (figure 4) and 
normal modes are sensitive to some of 
the same elastic parameters containing 
these perturbation terms. 

Azimuthal anisotropy may be an indicator of deformation or flow in the Earth’s mantle. 
Here, we present the results of incorporating upper-mantle azimuthal anisotropy in the 
forward calculations to produce synthetic normal mode spectra. This was done using the 
results of Beghein et al. (2008), who performed a model space search to find the most likely 
values of the elastic parameters that describe azimuthal anisotropy in order to fit the normal 
mode splitting coefficients measured by Resovsky & Ritszwoller (1998). The effects are 
clearly visible in the normal mode spectra.  

We will implement the surface wave models of azimuthal anisotropy from Yuan & 
Beghein (2013) and Yuan & Beghein (2014) and study their effect on synthetic normal 
mode spectra. 
 
We will use normal modes to study the presence of azimuthal anisotropy in regions 
that are out of reach for surface wave studies, such as the D’’-region.  

Spheroidal modes Toroidal modes 

Toroidal energy 
on vertical 
component 

Spheroidal energy 
on horizontal 
component 

Earthquakes of sufficient magnitude have 
the ability to make the entire Earth oscillate 
at distinct eigenfrequencies, depending on 
the Earth’s internal structure. The 
corresponding patterns of displacement, 
the eigenfunctions, are the Earth's normal 
modes. They are divided into spheroidal 
modes 𝑆𝑛 𝑙  and toroidal modes 𝑇𝑛 𝑙 (figure 
1).  
 
Normal mode coupling is the exchange of 
energy between normal modes. 
Mathematical coupling rules describe what 
type of modes may couple due to different 
mechanisms, such as the Earth’s rotation, 
ellipticity and aspherical structure. Figure 2 
Illustrates the coupling due to the Coriolis 
force. The energy exchange between 
coupled normal modes can make toroidal 
modes appear on vertical-component 
recordings and spheroidal modes on 
horizontal-component recordings. 

2. Normal mode coupling 

Figure 1: The Earth’s oscillatory motion after a large 
earthquake is divided into spheroidal and toroidal  
normal modes, that appear on a seismogram as 
distinct peaks in the frequency domain.  

Figure 3: Vertical (left) and horizontal (right) component spectra at station GRFO from the 11 March 
2011 Tohoku earthquake, showing a large exchange of energy between modes 𝑆0 11 and 𝑇0 12 in the 
data (blue). The synthetic data (orange), which were computed for S20RTS including Earth’s rotation 
and ellipticity, do not predict this strong coupling. Another coupling mechanism is therefore required 
to explain these observations, which is most likely azimuthal anisotropy. 

Beghein et al. (2008) determined, by means of a model space search, what the most likely 
values of these elastic parameters are in order to produce the degree-two structural coefficients 
of Resovsky & Ritzwoller (1998). We used their values of the elastic parameters to determine 
the corresponding structure coefficients, which were in turn used to calculate synthetic normal 
mode spectra (see also figure 5).  

Normal mode coupling due to the Earth’s 
structure is described by structure 
coefficients cs

t  that contain the elastic 
parameters for azimuthal anisotropy. 
Resovsky & Ritzwoller (1998) found that 
the structure coefficients of degree-two 
structure (s = 2) for modes 𝑆0 𝑙 − 𝑇0 𝑙+1 
differ significantly from those expected for 
an isotropic Earth. These modes are 
sensitive to six elastic parameters 
describing azimuthal anisotropy 
(𝐻𝑐 , 𝐺𝑐 , 𝐵𝑐 , 𝐾𝑠, 𝐽𝑠 and 𝑀𝑠) and are mainly 
sensitive to the upper mantle and the 
transition zone.  
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Figure 7: Synthetic vertical-component spectra of modes 𝑆0 11 and 𝑇0 12 at a range of latitudes for the 28 
March 2005 Sumatra earthquake. Synthetics were calculated for coupling due to 7a: azimuthal anisotropy 
only; 7b: the Coriolis force only and 7c: both azimuthal anisotropy and the Coriolis force.   

 
This project has received funding from the European Research 
Council (ERC) under the European Union’s Horizon 2020 research 
and innovation programme (grant agreement No 681535 - ATUNE) 
and a Vici award number 016.160.310/526 from the Netherlands 
organization for scientific research (NWO). The facilities of IRIS 
Data Services, and specifically the IRIS Data Management Center, 
were used for access to waveforms, related metadata, and/or 
derived products used in this study.   

Azimuthal anisotropy in the Earth’s mantle from normal mode spectra 
R.M. van Tent1, S.A. Schneider1, C. Beghein2, A.F. Deuss1 

1Department of Earth Sciences, Utrecht University, the Netherlands 
2Earth, Planetary, and Space Sciences department, University of California Los Angeles, USA 

 

Figure 6: Degree-two structure coefficients for several 𝑆0 𝑙 − 𝑇0 𝑙+1 modes as determined by 
Resovsky & Ritzwoller (1998) and as computed for two Earth models: with and without 
azimuthal anisotropy in the top 670 km of the mantle. 

Figure 2: The Coriolis force due to Earth’s rotation couples normal modes of type 𝑆𝑛 𝑙 − 𝑇𝑛 𝑙±1. 2a: 
Singlets of coupled and uncoupled modes 𝑆0 11 and 𝑇0 12. The 2𝑙 + 1 eigenfrequencies of a coupled 
mode repel those of the mode it is coupled with, while attenuation is shared. 2b: Schematic 
vertical-component spectrum for coupled and uncoupled modes 𝑆0 11 and 𝑇0 12. Toroidal mode 𝑇0 12 
is observable on the vertical component of the frequency spectrum when it is coupled with 
spheroidal mode 𝑆0 11. This coupling is required in order to fit the data.   
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Azimuthal anisotropy may be required to explain observed normal mode coupling that can 
not yet be reproduced with synthetic spectra, as shown in figure 3.  

For coupled fundamental modes 𝑆0 𝑙 − 𝑇0 𝑙+1, figure 6 shows the degree-two structure coefficients 
for azimuthal anisotropy confined to the top 670 km of the mantle, calculated using the elastic 
parameter values from Beghein et al. (2008); the data from Resovsky & Ritzwoller (1998) and the 
coefficients for an isotropic Earth based on velocity models S20RTS and CRUST5.1. Coefficients c2

0 
and Rec2

1 have similar values for the anisotropy model and the data, while the other coefficients 
for anisotropy show little agreement with the data. We did however proceed to compute synthetic 
spectra using this model for azimuthal anisotropy, in order to find out whether the effects of 
azimuthal anisotropy on the coupling of modes 𝑆0 𝑙 − 𝑇0 𝑙+1 were visible in the synthetic data 
(figure 7).   
 
The synthetic spectra in figure 7 show the effects of azimuthal anisotropy, the Coriolis force and 
their combined effect on the coupling between modes 𝑆0 11 and 𝑇0 12 for a range of latitudes. 
Comparing the amplitudes of the spheroidal and the toroidal modes in figure 7b and 7c shows that 
azimuthal anisotropy has a significant effect on the coupling of the two modes.  
 
Figure 7 also illustrates that there is no Coriolis coupling for equatorial paths, as the Coriolis force 
is zero at the equator. Anomalous coupling between modes of type 𝑆0 𝑙 − 𝑇0 𝑙+1 on equatorial paths 
may then be attributed to azimuthal anisotropy.  


