<image>

Crop Residue Energy Potentials: What Role for Sustainable Intensification?

Universiteit Utrecht

I. Mouratiadou¹ | T. Stella² | T. Gaiser³ | F. van der Hilst¹ | B. Wicke¹ | Y. Zhang³ | C. Nendel² | T. Heckelei³ | F. Ewert^{2,3}

1 Utrecht University, Copernicus 2 Leibniz Centre for Agricultural 3 University of Bonn Institute of Sustainable Development Landscape Research

Contact: i.mouratiadou@uu.nl; Heidelberglaan 2, 3584 CS Utrecht, the Netherlands; www.uu.nl/staff/IMouratiadou

Introduction

The use of agricultural **residues for energy** is appealing due to its potential to contribute to **climate change mitigation** without jeopardizing **food security**.

Aim

The **aim** of this study is to assess how a **sustainable intensification** approach can increase the potential of crop residues for emissions reduction and energy output, while considering other environmental objectives and competing demands.

zalf

Rheinische Friedrich-Wilhelms-Universität Bonn

However, other socio-economic or environmental concerns, such as **soil organic matter** decline or competition with **other uses** need to be considered.

Approach: spatially and temporally explicit estimation of energy potentials

Case study of North Rhine-Westphalia (NRW) in Germany: highly productive and intensive agricultural region

Table 1: Scenario description.

	Baseline	Alternative
Residue removal rates	33% cereals 0% other crops	Humus balance adopted by Landwirtschaftskammer (LWK) NRW (2015)
Nitrogen (N) fertiliser rates	Rule-based estimates from LWK NRW (2016)	Estimates based on simulated mineral N content in the soil
Covereres	2EV/ winter cover	100% winter cover

Results

- There is potential for higher residue removal rates, which can result in higher energy and emission reduction potentials.
- More precise estimation of N fertiliser application rates decreases nitrate leaching.
- The current humus balance approach is not sufficient for avoiding negative trends in soil organic carbon (SOC).
- Crop yields are affected minimally by the removal of more residues (data not shown here).

Figure 2: Average values in the period 2011-2030.

Concluding remarks

- Sustainable intensification measures in relation to crop residues can be a win-win option for climate protection, long-term soil
 and water sustainability, and agricultural profitability.
- Further research aims at identifying strategies on residue removal rates that would hinder SOC decline while increasing the amount
 of exported residues.

References

Britz, W. and P. Witzke (eds.) (2014). CAPRI model documentation 2014. University of Bonn, Bonn, 277 pp. <u>http://www.capri-model.org/docs/capri_documentation.pdf</u>

LWK NRW (2015). Humus und Bodenfruchtbarkeit. <u>https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/boden/humus-pdf.pdf</u>

LWK NRW (2016). Ratgeber Pflanzenbau und Pflanzenschutz. Landwirtschaftskammer Nordrhein-Westfalen, Münster, Germany. Nendel, C., M. Berg, K.C. Kersebaum et al. (2011). Ecological Modelling, 222(9): 1614-1625.

faculty of **Geosciences**

This research is part of the SUSTAg project, that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 652615.