Limits to large-scale groundwater withdrawal: on the role of surface water-groundwater interaction

Marc F.P. Bierkens, Inge E.M. de Graaf, Sophie de Cock, L.P.H. (Rens) van Beek

The issue

Global groundwater depletion represented by the groundwater footprint (Gleeson et al., 2012).
The big question: how much groundwater is there and how long does it last?

The framework

The nature of groundwater-surface water interaction in a phreatic aquifer under pumping:
Stage 1 withdrawal: groundwater connected with surface water; mostly affecting streamflow
Stage 2 withdrawal: groundwater disconnected from surface water; effect on streamflow limited; causing enhanced depletion

The model

Global hydrology and water resources model PCR-GLOBWB coupled with a global two-layer groundwater flow model based on MODFLOW (De Graaf et al., 2017)

Critical decline limit

Changes in groundwater-surface water interaction over North America between 1910 and 2010 (MSc-thesis de Cock)

Environmental flow limit

Time to reaching the environmental flow limit

Economic limit

Depth to economic depletion

Economic depletion: investments to go deeper exceed profit over next depreciation period

\[C_d(t) = \frac{R(t) - C_d(t) - C_l(t)}{r} \]

- \(C_d(t) \): Depreciation period (years)
- \(r \): Interest rate (%)
- \(R(t) \): Revenues from crop yield
- \(C_d(t) \): Investment costs
- \(C_l(t) \): Energy costs
- \(C_l(t) \): Yearly interest payment

Time to reaching the environmental flow limit under groundwater pumping (De Graaf et al., in revision)