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2. Methods
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tion and lithospheric brittle and deforms through thrusting and underplating, while the suture zone is probably ductile as in the models.

structure (Fig. 3).

Free slip

® Geodynamics driven solely by slab buoyancy and governed by lithospheric rheology can explain the first-order fea-

tures of Northern Apennines tectonics through lithospheric delamination, slab retreat and wedge protrusion. Unlike
in the models, consistent uplift of the mountain range and of long-wavelength subsidence in the northwesternmost sector of
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