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ABSTRACT RESTORING SYMMETRY BENCHMARKING

. We have implemented a Newton solver for Approx. J“* with the eq. below where E¥™ = 1 (E,npq + Epgmn) @aNd E(e(ur))mnpg = [26(u)mn S p>] We show here results of a setup based on

ASPECT (Kronbichler et al., 2012) Spiegelman et al. (2016), on a mesh that has
2. We only use solver libraries to solve linear (), ~ (Ag)y, + (8(90;,,), (an(s(g:),pk) : 8(90?))8(%)) N (6(@?)’ (an(e(g:),pk) : dﬁ))e(w)) been refined either 4 (64x16.cells) or 8 times

systems (no Trilinos NOX or PETSC SNES) Ay 4 ( ("), BY™ (e (wr))e (0" )) strain-$a1t(924X256 cells) umformly.WEIOCity

3. We have implemented line search and
oversolving-prevention ourselves

FORCING SYMMETRY AND POSITIVE DEFINITENESS

4. The Jacobian is not always Symmetric Pos-

The positive definiteness of J“* is determined by tensor H:

itive Definite (SPD)

5. We force the Jacobian to be SPD in a cheap T4 = (e(ef), 2n(=(u)e(e}) ) + (el EY™ (e(w)e ()
and optimal way = (e(e}). [2n(c()] ® T + E¥™(c(w))] (1))

6. This allows for more complex rheologies to . H

be used with a Newton solver

We can force tensor H to be SPD by scaling E°Y™ with a factor a:

PROBLEM STATEMENT H® = 2n(e(u)I @ I + aEY™(e(u)) viscosity SPD-factor

We are interested solving the Stokes equations: with 0 < a < 1. If @ = 0 J** will always be SPD, but to have optimal convergence we want a« tobe
1 as large as possible (max one). It can be proven (Fraters et al., in prep) that the optimal value for « is
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where for the incompressible case the Jacobian le12

. . . Convergence results for the realistic 3d testcase. I
elements are (ignoring the pressure scaling):
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