

Universiteit Utrecht

Motivation Using remote sensing for canopy N and P detection?

- **Nitrogen** (N) and **Phosphorus** (P) are essential nutrients for plant growth. These nutrients are linked to vegetation processes and to carbon (C) assimilation by vegetation
- Accessing information about plant trait data for the N- and P- cycles, e.g. canopy N and canopy P, is thus essential.
- **Canopy N and P concentration** data are usually obtained by destructive methods and **are** lacking for larger scales

=> Remote sensing has already been used to detect canopy N at local scale and offers the possibility to investigate the estimation of canopy N and P concentrations across different scales

1. Local scale VIs tested for canopy N:P detection

Holcus lanatus grasses were grown under different N to P ratio (N:P) nutrients supply. Foliar canopy N, P and N:P were analyzed with existing VIs. We studied the influence of the sensors bandwidth using VIs calculated from the original narrow band spectra and the spectra resampled to the bandwidth of 4 satellite sensors

Fig 3. Heatmaps showing the r² between canopy N, canopy P and canopy N:P and each combination of two reflectance bands ratio $\left(\frac{\Lambda I}{\lambda 2}\right)$ between 400 – 1000 nm. Higher correlation for reflectance bands in the blue (400 – 500 nm) and green-red (500 – 700 nm) regions of the spectrum

VI (wavelength)	r ² canopy N	r ² canopy P	r ² canopy N:P
TB (R498, R413, R442)	0.42	0.52	0.48
TB (R434, R496, R401)	0.38	0.48	0.44
ND (R1220, R710)	0.44	0.37	0.41
ND (R693, R1770)	0.39	0.34	0.40
ND (R735, R1285)	0.44	0.30	0.40
Table 1. r ² obtained between VIs and			

canopy N, canopy P and canopy N:P.

VIs calculated using blue wavelength

ig 4. Comparison between the r^2 obtained for canopy N:P and VIs calculated with the original reflectance spectra or the spectra resampled to the bandwidth of 4 satellite sensors (Terra-Aqua - MODIS, Sentinel 2 -MSI, Sentinel 3 OLCI and LANDSAT 8 – OLI)

Conclusion and perspectives

Vegetation indices showed significant relationships with canopy N, P and N:P at local scales and in different ecosystems. In these results, the forest type had a great influence on the relationships. A next step will be to include and forest density. This will allow us to better understand the variability within the relationship for each plant functional type.

perform better

Sensing nitrogen and phosphorous concentrations

in vegetation across different scales

Yasmina Loozen^{1,2}, K.T. Rebel¹, D. Karssenberg², M.J. Wassen¹, S. Wang¹, J. van Dijk¹, J. Sardans³, J. Peñuelas³, S.M. de Jong²

grass spectrum Fig 2. Obtained grass spectrum used for VIs calculation

Objectives and approach Sensing canopy N and P across scales

We investigated the remote sensing of canopy N and P in vegetation across different scales using vegetation indices (VIs)

European scale	1. A
Regional scale	2. A
Local scale	С
	3. A
	C

At the local scale, we tested and developed VIs for canopy N and canopy N to P ratio (N:P) detection on a grass species ising in situ reflectance measurements

At the **regional scale**, we used the spaceborne MERIS Terrestrial chlorophyll Index (MTCI) to study the relationship with canopy N in Mediterranean forests

At the European scale, we used three VIs (MTCI, NDVI and EVI) from MERIS and MODIS spaceborne sensors to sense canopy N in temperate forests

Utrecht University, Faculty of Geosciences ¹Copernicus Institute of Sustainable Development & ²Department of Physical geography

Universitat Autònoma de Barcelona ³CREAF-CSIC, Global Ecology Unit

3. European scale influence of sensor spatial resolution

Using the ICP-Forests database, we investigated the relationship between canopy N measurements from > 1000 European forests plots with different VIs from MERIS and MODIS sensors at 1 km and 250 m spatial resolution

r² = 0.42, p - value = 1.3e-193 20 10 canopy N_[%] (%N)

Fig 9. Linear relationship between MTCI or NDVI and canopy N. Stronger relationship between MTCI and canopy N compared to NDVI. Strong influence of the plant functional type on the results

Fig 10. Linear relationship between EVI at either 1 km or 250 m spatial resolution and canopy N. The spatial resolution of the EVI VI does not greatly influence the results

Netherlands Organisation for Scientific Research