Variability in internal architecture of channel belts in the Rhine-Meuse delta, Netherlands

T.G. Winkels¹, E. Stouthamer¹, K.M. Cohen¹,², H. Middelkoop¹

¹ Utrecht University, Department of Physical Geography, Faculty of Geosciences, P.O. 80.115, 3508 TC, Utrecht, the Netherlands
² Department of Applied Geology and Geophysics, Deltares, P.O. 85467, 3508 AL, Utrecht, the Netherlands.

*Corresponding author; e-mail: t.g.winkels@uu.nl

Project Aim:

To incorporate the various nested scales of heterogeneity, within and between fluvial deposits, into the piping modelling. The focus lies on making a (three-dimensional) reconstruction of the channel belt internal architectural elements and surrounding overbank deposits throughout the Rhine–Meuse delta.

Theoretical framework

The internal build-up of channel belts is diverse, comprising a range of elements and sedimentological structures. Within this project we want to summarize and quantify the spatial differences in internal composition of channel belts and their surrounding overbank deposits. Hereeto we distinguish five different architectural elements based on the genesis of these deposits (during periods that the river was active and abandoning, respectively).

1) cross-bedded sand deposits (e.g. scrolls bar and chute bar elements)
2) vertically aggraded sandy deposits (e.g. plug-bars)
3) fine-grained subaqueous deposits (e.g. oxbow fills, residual channel fills)
4,5) non-channel deposits associated to Element 1 and Element 2 (e.g. levee elements from active channel and channel abandonment stages)

Delta boundary conditions

Example Case study: Stuivenberg

High resolution transects were cored at each pilot site. Clayey material was cored using an edelman corer while sandy material was retrieved using a Van der Staay suction corer. Samples were analysed in the field* and sampled for sedimentary analysis.

Conclusion and followups

Detailed study of paleo channels belts using fielddata reveals that it is possible to identify sub elements within a otherwise homogeneous classified sandy body. In the next phase laboratory datasets will be added to quantify individual architectural elements which will help us to better determine hydraulic properties of these elements and investigate the effects of lithological variations on the groundwater flow patterns.