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Abstract

Despite well-documented drawbacks, the bi-tri-linear veloc-
ity - constant pressure (Q1P0) element is still the workhorse
of many Finite Element geodynamics codes. With the ad-
vent of modern parallel iterative solvers and ever more pow-
erful high performance computers, a new generation of
codes now relies on quadratic elements, which are stable
and yield better accuracy. However, two exceptions come to
mind in the past decade: the Rhea code [1,5] and the GALE
code [2] which both rely (or relied, in the second case) on
the stabilised low-order element Q1Q1 element. This ele-
ment is linear for both velocity and pressure. While Rhea
was very successful for large-scale adaptive mantle con-
vection simulation (Stadler et al, Science 2010), the GALE
manual states: ”[Like the Q1P0 element,] this formulation
has its own instability that is fixed by adding an artificial
compressibility. In principle, this artificial compressibility
should be small and get smaller as resolution increases. In
practice, for realistic geologic problems, the artificial com-
pressibility was far too large and dramatically altered the
dynamics.”

1. Conservation equations

The mechanical behavior of Earth materials is described by
means of the Stokes equations:

∇ ·
(
µ(∇v + (∇v)T )

)
−∇p + ρg = 0 (1)

∇ · v = 0 (2)

Eq. (1) is the momentum conservation equation and Eq. (2)
is the mass conservation equation for incompressible fluids.

2. Discretisation

Although stabilised bi-tri-linear velocity and pressure
(Q1Q1) element were previously proposed [7,9] the one pro-
posed in [4,6] has a clear distinct advantage: it is simple
to implement and does not involve any tunable parameter.
Through careful analysis it was showed that the element is
stable and that the pressure modes do not occur.
The FE discretisation of the Stokes equations yields the fol-
lowing linear system:(

K G
GT −C

)(
V
P

)
=

(
f
h

)
where

C(p, q) =
1

µ

∫
Ω

(p− π(p))(q − π(q))dΩ

and where π actuallys stands for a projection operator sim-
ply given by:

π(p) =
1

V

∫
Ω
pdΩ = p̄

The system is solved by means of a Preconditioned Conju-
gate Gradient algorithm applied to the Schur complement.
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3. Simple analytical problem

The domain is square Ω = [0, 1] × [0, 1], and boundary con-
ditions are such that v = 0 on Γ. The viscosity is set to µ=1.
The exact solution is then given by [3]:

u(x, y) = 2x2(1− x)2(y − 3y2 + 2y3) (3)
v(x, y) = −2y2(1− y)2(x− 3x2 + 2x3) (4)
p(x, y) = x(1− x)− 1/6 (5)

The body force vector is obtained by inserting the exact so-
lution in Eq. (1). Note that

∫
Ω pdV = 0 by construction.
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⇒ Q1Q1 element pair well implemented.

4. SolCx & SolKz

These benchmarks are intended to test the accuracy of the
solution to a problem that has a large jump in the viscos-
ity along a line through the domain. Such situations are
common in geophysics: for example, the viscosity in a cold,
subducting slab is much larger than in the surrounding, rel-
atively hot mantle material.
The SolCx benchmark computes the Stokes flow field of a
fluid driven by spatial density variations, subject to a spa-
tially variable viscosity. Specifically, the domain is Ω =
[0, 1]2, gravity is g = (0,−1)T and the density is given by

ρ(x, y) = sin(πy) cos(πx) (6)

Boundary conditions are free slip on all of the sides of the
domain and the temperature plays no role in this bench-
mark. The viscosity is prescribed as follows:

µ(x, y) =

{
1 for x < 0.5

106 for x > 0.5
(7)

The SolCx benchmark was previously used in [10] (refer-
ences to earlier uses of the benchmark are available there)
and its analytic solution is given in [11]. It has been carried
out in [12,13]. Note that the source code which evaluates
the velocity and pressure fields for both SolCx and SolKz is
distributed as part of the open source package Underworld
[14], http://underworldproject.org).
The SolKz benchmark [15] is similar to the SolCx bench-
mark but the viscosity is now a function of the space coor-
dinates:

µ(y) = exp(2By) with B = 13.8155 (8)

The forcing is again chosen by imposing a spatially variable
density variation as follows:

ρ(x, y) = sin(2y) cos(3πy) (9)

Free slip boundary conditions are imposed on all sides of
the domain.
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⇒ Stokes solver can handle large viscosity contrasts

5. Stokes sphere

The domain is a unit square with no-slip boundary condi-
tions. Gravity is g = (0,−1). The fluid has a density ρ0 = 1
and the sphere has a density ρs = ρ0+δρ with δρ ∈ [10−3 : 1].
There is no viscosity contrast between the sphere and the
fluid. Simulations are also run with reduced densities, i.e.
ρ0 = 0 and ρs = δρ.

a) b)
Velocity fields for the full density (a) and reduced density

(b) with δρ = 0.001 and resolution 128x128.

a) b)
Velocity fields for the full density (a) and reduced density

(b) with δρ = 0.001 and resolution 512x512.
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⇒ When δρ = 10−4 a resolution of 10242 is not enough to
arrive at the expected physical velocity field!
This problem in inherent to Q1Q1 as Q1P0 does not show-
case the same behaviour:
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6. Conclusion

•Q1Q1 element relatively easy to implement and easy to
incorporate in a Schur complement approach solving pro-
cedure.
•When using full density a very high resolution is needed

to achieve mesh independent measurements for small
density variations (only 10−3 in this case)
⇒ buoyancy driven flows nearly impossible!
•When using reduced densities, this problem is alleviated

but recovered pressure is overpressure, not total pres-
sure.
⇒ Free surface flows impossible!
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