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1. INTRODUCTION 
Slow slip events have been discovered in subduction interfaces in the past two decades. 
Previous experiments observed similar quasi-dynamic processes in frictional sliding 
experiments on fine-grained quartz gouge (Leeman et al., 2015) and suggested loading 
system stiffness plays a crucial role in the evolution from quasi-dynamic to dynamic slip. 

However, these experiments were in the absence of a pore fluid (pressure) which is believed 
to play a key role in slow slip events and tremor along subduction zone interface (Obara 
2002; Rogers and Dragert 2003). Recently, Chen et al. 2017 suggested that water 
vaporization occurring during rapid seismic slip causes enhanced dynamic weakening. The 
question can then be raised what the role of pore fluid pressure is during slow slip events 
and how pore fluid pressure might control the transition from quasi-dynamic to dynamic slip.  

We implemented experiments with a ring shear apparatus (Niemeijer et al., 2008) and 
applied different pore fluid pressures (water) to investigate the slip behavior of simulated 
gouges of fine-grained quartz (Sil-Co-Sil 49, US Silica company).  Additionally, to explore 
potential acoustic emissions from slow slips, a 1 MHz and a 4 kHz piezoelectric acoustic 
sensor are deployed at the bottom of  the vessel that is ~25 cm below the sample (Fig.1). 

2. EXPERIMENT SETUP 
Quartz powder with grain size < 49 um is used in all experiments to simulate fault 
gouge. We continuously shear the bottom piston with a velocity of 6 µm/s at room 
temperature and and effective normal stress of 60 MPa, with pore pressures of  
0.1, 10, 100 and 150 MPa. 
  

 

3. SLOW-SLIP AND PRECURSORY SLOW-SLIP EVENTS  

4. OPEN QUESTIONS 
With an original record of shear stress recorded at 5 MHz, its time derivative is calculated to yield the 
stress drop rate. In a catalogue with ~1000 detected AE events, we obtained stress drops (Δτ  )  varying 
between 0.3 and 10 MPa. Below a Δτ  of 4 MPa, we see an exponential increase of stress drop rate (slip 
velocity) from ~1 MPa/s to 1 GPa/s. Beyond 4.2 MPa, the stress drop rate increases linearly with stress 
drop. What is the mechanism behind?  
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Fig. 3.  U771, Stress drop rate varies with stress drop value  
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Fig. 5. U771, Maximal amplitude of Acoustic 
emissions vs. slip velocity.  
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Acoustic emission data are recorded with a 5 MHz sampling rate 
and high passed filtered over 120 kHz to remove the low 
frequency noise. In Fig. 5, at slip velocity smaller than ~ 1 mm/s, 
we can clearly identify precursory slow slips which generate 
stronger AE than regular slow slip events (black). 
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Fig. 2. Experiments with constant sliding velocity 6 um/s, constant effective normal stress 60 MPa, and various pore pressure 0.1, 10, 100 and 150 MPa. 
Slow-slip events are well developed in high pore pressure experiments (u771 & u781). 
Low pore pressure experiments show larger stress drop rate (slip velocity) (column 5).   
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Fig.1. Ring shear apparatus (Niemeijer et al., 2008; Den Hartog et al., 2012)  

Torque	gauge	
couple	

Load	cell	

Fig. 4. U771, examples of slow slip and precursory slow slip in a 25 second 
window.  
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