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We test the effect of having a plate interface with
discrete stick-slip asperities embedded in a
region that is always unlocked. We also
keep the brittle-ductile transition

 daesio down-dip of the asperities unlocked. The
asperites  asperities are 40 km to a side (Mw ~7.0-7.5
Brittle-Ductile earthquake), separated by 40 km. This is

Transition Zone i . . ]
unlocked. The shallow interface up-dip of the compatible with the dimensions and
o seismicity has decreased since models is similar. seismogenic zone is weak, and always unlocked. distributions inferred from coupling inversions.
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We first run a laterally uniform (i.e., plane strain)
model in which the entire seismogenic zone

IS locked during inter-seismic loading and
- unlocked during the co-seismic stage.
Down-dip of the seismogenic zone is a
visco-elastic shear zone that is locked
(elastic) during the earthquake and otherwise
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Earthquake Cycle Stresses

In this study, we focus on the stresses
throughout the model, which are inferred to
promote or inhibit intraplate fault slip.
Specifically, we investigate how the plate

s 0607 o0 w0 o w5 s interface slip configuration affects these
The rate of normal fau|ting stresses. The kinematic evolution of these
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