Drivers and climatic impact of organic carbon burial: comparing OAE2 and the PETM

Nina M. Papadomanolaki^{1*}, Richard E. Zeebe², Appy Sluijs¹ and Caroline P. Slomp¹

*e-mail: n.papadomanolaki@uu.nl

¹Department of Earth Sciences, Utrecht University, The Netherlands ²Department of Oceanography, University of Hawaii at Manoa, USA

INTRODUCTION

The positive $d^{13}C$ excursion and pCO_2 decrease during OAE2, including the **Plenus Cold Event¹⁻²**, and the initially rapid δ^{13} C recovery during the termination of the PETM³⁻⁴ are hypothesized to be the result of enhanced organic C (C_{org}) burial⁵⁻⁶.

In this study, we present results from carbon-cycle box **models**, LOSCAR and a new C-O₂-P model (NMP_UU), which includes coastal marine environments, to assess the potential drivers of enhanced **C**_{org} **burial** and their **impact** on the **carbon cycle** during OAE2 and the PETM. We focus on the role of eutrophication, deoxygenation and redox-dependent P recycling and also present a data compilation for the PETM.

 pCO_{2} and $\delta^{13}C$ with/without O_{2} feedback (LOSCAR)

 pCO_2 and $\delta^{13}C$ per CO_2 emission scenario (Loscar)

RESULTS: OAE2

rial (Pg)

nq

ບັ

Using an emission scenario of 8000Pg/50kyr in LOSCAR-P we show that the **pCO**, decrease and d¹³C increase can be attributed to enhanced **C**_{ora} **burial** through eutrophication and ocean deoxygenation.

By comparing long emission scenarios⁹ in LOSCAR with **short** ones we show that only the latter produces the simultaneous drop in pCO, and **increase in \delta^{13}C**, which is seen in data⁴.

Time (kyr)

Increased **external P** together with redox-driven P recycling are required to simulate the required **C**_{org} **burial** for CO₂ drawdown in NMP UU.

Whole event (all available data)

Termination

RESULTS: PETM

惊 ?

Our data compilation shows widespread eutrophication and ocean deoxygenation across the open and coastal ocean, with signs of recovery during the **termination**. However, model results (not shown here) suggest **recovery** of **P burial** is slow and may have facilitated ongoing C_{org} production and burial during the termination.

Using emission scenarios from literature, we show with NMP UU that, besides increased external P input, redoxdependent **P** recycling is required to cause excess burial of ~2000 Pg C³⁻⁴ during the termination of the PETM. **Shelf** burial generally accounts for more than **70%** of burial.

CONCLUSIONS

1. Increased C_{ora} burial, coincident with a break or drop in CO_2 emissions, is key for reconstructing OAE2 pCO_2 and $\delta^{13}C$ trends. 2. Deoxygenation and reduced P burial are required for 2000+ Pg excess C_{org} burial during PETM.

1 Jenkyns (2010) G³ 2 Jarvis et al. (2011) Paleoc. Paleocl. 3 Bowen and Zachos (2010) Nature 4 John et al. (2014) Biogeosciences 7 Frieling et al. (2016) PNAS 8 Gutjahr et al. (2017) Nature 9 Du Vivier et al. (2015) EPSL

