

in collaboration with:

Faculty of Geoscience
Earth, Structure & Dynamics
MSc. Project

Experimental investigation of complex plastic strain paths using Equal Channel Angular Pressing (ECAP)

Diede Hein, David Wallis & Lars Hansen

I. INTRODUCTION

- Models struggle to predict Crystallographic Preferred Orientations (CPO) in regions of complex straining^[1].
- Post-deformation annealing yields interesting
 CPO behaviour^[2].
- An experimental analog is required to benchmark models and improve predictions.
- ECAP is a metallurgic technique able to generate complex strains in combination with varied annealing treatments^[3].

Boneh et al., 201

[001]

II. KEY OBJECTIVES:

- Adapt ECAP to geological materials.
- Study complex strain path microstructures.
- Test the ability of the Visco-Plastic Self Consistent model^[4] (VPSC) to predict complex deformation CPO.

III. METHODS & RESULTS

Copper cap Copper capsule Copper capsule Copper capsule Lo Description: Lo Description: Alumina Plunger @750°C

• Induces simple shear into the sample.

 Allows for multiple passings of the sample, including rotations to generate complex strain

 Study post-deformation annealing trends along sample length.

Microstructure evolution along a complex strain path:

- Grain growth, formation of foliation, & incipient grain boundary migration recrystallisation.
- Intracrystalline Vorticity Axes (CVA) confirm simple shear.
- Subgrain sizes agree with dislocation creep flow laws.

Experimental vs. predicted CPO evolution along a complex strain path:

Further constraints on microstructure evolution through:

- ECAP completely overprints pre-existing CPO.
- Formation of a **strong deformation CPO**.
- VPSC predicts additional c-axis clusters and significantly underestimates CPO strength during complex straining.

IV. CONCLUSIONS

- ECAP is a promising experimental technique to investigate rheological characteristics of complex strain.
- Complex straining can overprint pre existing CPO through combined slip system activity.
- VPSC severely underestimates CPO strength and predicts additional clusters at small strains, revealing potential areas of improvement.

V. FUTURE WORK

- Improve methodology towards higher temperatures, higher strains, longer samples, and chemical controls.
- Further investigate cause(s) of discrepancy between model and experiment and propose modifications.
- Expand technique to Olivine and other geological materials.

Acknowledgements:

This research was supported by the Olaf Schuiling fonds of Utrecht University Fund.

References:

- Becker, T. W., Conrad, C. P., Schaeffer, A. J., & Lebedev, S. (2014). Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth and Planetary Science Letters, 401, 236-250.
- Boneh, Y., Wallis, D., Hansen, L. N., Krawczynski, M. J., & Skemer, P. (2017). Oriented grain growth and modification of 'frozen anisotropy'in the lithospheric mantle. Earth and Planetary Science Letters, 474, 368-374.
- Nejnoto, M., Horita, Z., Furukawa, M., & Langdon, T. G. (1998). Equal-channel angular pressing: A novel tool for microstructural control. Metals and Materials. 4(6). 1181-1190.
- Lebensohn, R. A., & Tomé, C. N. (1993). A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta metallurgica et materialia, 41(9), 2611-2624.