Investigating tropical-African climate during the Late Pleistocene and Holocene using biomarkers from Lake Chala

Allix Baxter1,2, Ellen Hopmans1, Stefan Schouten1,2, Francien Peterse2, Dirk Verschuren1 and Jaap Sinninghe Damsté1,2

1 Department of Marine Microbiology and Biogeochemistry, Royal NIOZ, and Utrecht University, The Netherlands
2 Department of Earth Sciences, Utrecht University, the Netherlands
3 Department of Biology, Ghent University, Belgium

Contact person: a.baxter@nioz.nl

Much of our knowledge of Earth’s Quaternary climate history is derived from deep-sea sediments or from ice-sheet cores at high latitudes. Therefore, more long-term records from tropical continental contexts are needed to better appreciate how climate has developed globally. Particularly, developing reliable methods for estimating absolute temperature in the past is crucial for relating global and regional climate changes. Further, there is a need for methods to evaluate past rainfall independently of the moisture source, as rainfall is often a limiting factor in vegetation growth and therefore also in the movement of humans and animals.

Being the largest landmass at the equator, with a considerable number of ancient lakes, tropical Africa has become a hotspot for paleoclimate research. Lakes are excellent settings for multi-proxy climate studies as they carry information about both terrestrial processes from the surrounding area, such as vegetation change, and variation within the lake itself.

ICDP project DeepChalla

In 2016, 215 meter (roughly the last 250 kyr) of profound lake sediments were recovered from Lake Chala in eastern equatorial Africa.

The unique location of Lake Chala just below the equator makes it ideal for reconstructing past behaviour of the Intertropical Convergence Zone (ITCZ), the North-Eastern and South-Eastern Indian monsoons and the Congo Air Boundary (CAB).

The ITCZ passes over Lake Chala twice a year, driving the Indian monsoons and delivering moisture to the region. The two rainy seasons are separated by a dry and windy period during which the oxycline extends deeper into the lake. The bottom waters of Lake Chala are permanently anoxic, leading to excellent preservation of organic material.

Results

Glycerol tetraethers, or glycerol dialkyl glycerol tetraethers, are membrane lipids produced by species of bacteria (for the brGDGTs) and archaea (for the isoGDGTs) in a variety of environments and are preserved on geological timescales. The types of GDGTs which are found in ancient sediments depends on the environmental conditions in which they were produced. Crenarchaeol, the GDGT derived by the nitrifying archaea Thaumarchaeota in the upper oxygenated layer of lakes. Using improved chromatography, researchers discovered additional brGDGT isomers with methylation at the 6th carbon position (eg. Ila; De Jonge et al. 2014). Separation of the 6-methyl brGDGTs from the previously known 5-methyl brGDGTs improved climate proxies based on these lipids (see Fig 3).

Methods

Archaeal isoprenoid GDGTs (isoGDGTs)

Bacterial branched GDGTs (brGDGTs)

Crenarchaeol

and amount of rainfall

Branched vs Isooprenoid index:

High BIT

High rainfall

Climate-system dynamics...

• The BIT record from Lake Chala (in accordance with the seismically inferred lake-level record) suggests that equatorial East Africa enjoyed wet climate during most of the last glacial period (NIS-MS2) when tropical West Africa was mostly dry (Dupont et al., 2004).

• The moisture balance history of equatorial East Africa (Fig 6d) is similar to tropical South-East Asia as recorded in Chinese speleothems (Fig 6b), reflecting more intense northern hemisphere monsoons when frequent climate ‘flip-flops’ (Durand-Rocher-Oscherwicz cycles) regularly brought ‘mid-glacial’ conditions to northern mid- and high-latitude regions (Fig 6d).

• Abrupt climate events originating in the North-Atlantic, such as the Younger Dryas stadial or Heinrich events H3 and H4 (possibly H5) caused dryer conditions in equatorial East Africa, likely because strengthened trade winds weakened the South-Eastern Indian Monsoon.

RESEARCH QUESTIONS

• What influences temperature and precipitation in equatorial East Africa?
 Glacial-interglacial cycles? Astronomical precession? Heinrich events?

• How can we interpret GDGT-based climate proxies in tropical lakes?
 What influences GDGT distribution? Which calibrations and proxies are most successful/suitable?

Discussion

Proxy interpretation...

• BIT and lake-level record (based on seismic stratigraphy) generally agree, with low BIT intervals corresponding to low stands (Fig 6d).

• Changes in the abundances of GDGTs record temperature variation.

• isoGDGTs: During high BIT intervals (when crenarchaeol concentration is very low), TEX86-based calibrations such as that of Tierney et al. (2010) are potentially unreliable as the signal may be overpowered by isoGDGTs from sources other than Thaumarchaeota (See Fig 6a, red points).

• Further, lake-level change will impact water-column stratification and the depth of crenarchaeal production, and hence may influence the TEX86 temperature signal (Kumar et al. 2013).

• brGDGTs: 6-methyl brGDGTs are important. The Pearson et al. (2014) calibration, which uses only the S-methyl brGDGTs, significantly overestimates temperature (Fig 6f).

• The calibration matters: temperature calibrations vary considerably in timing and magnitude of changes—this is particularly clear during the last deglaciation (Fig 6e,f). The Russell et al. (2010) calibration estimates a gradual transition to warmer climate starting ca. 50 ka BP, while the Tierney et al. (2010) and Pearson et al. (2014) calibrations show a sharp increase in temperature (from ca. 30 or 16 ka BP respectively), more congruent with temperature changes recorded in the Greenland and Antarctic ice cores.

Climate reconstruction of Lake Chala:

• The BIT record from Lake Chala (in accordance with the seismically inferred lake-level record) suggests that equatorial East Africa enjoyed wet climate during most of the last glacial period (NIS-MS2) when tropical West Africa was mostly dry (Dupont et al., 2004).

• The moisture balance history of equatorial East Africa (Fig 6d) is similar to tropical South-East Asia as recorded in Chinese speleothems (Fig 6b), reflecting more intense northern hemisphere monsoons when frequent climate ‘flip-flops’ (Durand-Rocher-Oscherwicz cycles) regularly brought ‘mid-glacial’ conditions to northern mid- and high-latitude regions (Fig 6d).

• Abrupt climate events originating in the North-Atlantic, such as the Younger Dryas stadial or Heinrich events H3 and H4 (possibly H5) caused dryer conditions in equatorial East Africa, likely because strengthened trade winds weakened the South-Eastern Indian Monsoon.