

Kinematic reconstruction of deformation in SE Asia: unfolding Earth's largest Cenozoic orocline

X2.161CEGUGeneral 2019

Eldert L. Advokaat [1,2] & Douwe J.J. van Hinsbergen [1] Department of Earth Sciences, Utrecht University, The Netherlands

[1] Department of Earth Sciences, Utrecht University, The Netherlands
[2] Department of Physical Geography, Utrecht University, The Netherlands

Introduction

SE Asia comprises a heterogenous assemblage of fragments derived from Cathaysia (Eurasia) in the north and Gondwana in the south. The Sundaland core was formed by accretion of Gondwana-derived fragments in the Late Triassic. More fragments accreted to Sundaland in the Cretaceous and Neogene.

SE Asia now hosts two strongly curved subduction zones: the Sunda trench with a 90° curvature and the Banda Arc with a 180° curvature (**figure 1**).

We restore these subduction zones to their original geometry at the timing of subduction initiation to study what mechanisms were responsible for orocline formation.

Figure 1.
Geographic map of SE Asia

Approach

Hierarchical reconstruction protocol:

- 1. marine magnetic anomalies
- 2. continental deformation
 - a. extension
 - b. strike-slip motion
- c. shortening
- 3. Geometric consistency

We test against and iteratively adjust the model to fit:

- 4. Paleomagnetically determined rotations

 5. Paleomagnetically determined latitudes
- 5. Paleomagnetically determined latitudes
- 6. Seismic tomography of the mantle

Datasets

Plate circuit: Seton et al. (2012, ESR) with modifications of DeMets et al. (2015, GJI)

Reference frames:

Paleomagnetic (Torsvik et al. 2012, ESR)

Moving hotspot (Doubrovine et al. 2012, JGR) **Regional reconstructions:**

Tibet (van Hinsbergen et al. 2011, Tectonics; 2018, tectonophys) South China (Replumaz & Tapponnier 2003, JGR)

Indochina (Li et al. 2017, ESR)

Sundaland and Borneo (Advokaat et al. 2018, Tectonics)

Reconstruction

Test against paleomagnetic data

We reconstruct two stages of counterclockwise rotation of Borneo, consistent with paleomagnetic data (figure 3).

Conclusions

1. The Sunda and Banda subduction zones had a straight geometry when they formed

cyan: low-T overprint-corrected data from ODP core 770

- 2. Two mechanisms of orocline formation:
 - The Sunda trench became curved through compression in the overriding plate.
 - The Banda arc became curved through eastward rollback of the Banda slab.
- 3. Most back-arc basins in eastern Indonesia formed above stationary trenches when the overriding plate moved away.