

Nucleation and growth of barium sulfate (BaSO₄) and calcium carbonate (CaCO₃) nanoparticles in aqueous solutions

Sergěj Y. M. H. Seepma & Mariëtte Wolthers

Universiteit Utrecht

Department of Earth Sciences, Utrecht University, The Netherlands

Relevancy of the Project

In Earth Sciences and Geoengineering, knowledge on crystal nucleation mechanisms is crucial to:

- quantify fluxes in biogeochemical cycles
- unravel the timing and rate of different geological processes
- unravel the physical and chemical conditions during crystal formation and prevent scaling
- evaluate crystal origin and quality and use that as a proxy for paleo-environmental conditions
- optimize crystal formation for subsurface remediation, stabilization and CO₂ sequestration

Figure 1: $BaSO_4$ scaling of geothermal energy, oil and gas pipelines leads to high repair and replacement costs ².

Figure 2: Importance of CaCO₃ scale formation in drinking water industries as it is a nuisance in industrial and household appliances ³.

<u>Dynamic Light Scattering (DLS)</u>

<u>Cross-Polarized Light in Optical Light Microscopy (XPL-OLM)</u>

3: Experimental set-up during OLM-XPL Figure experiments. The growth solutions (1); Peristaltic pump (2); Zen Lite software for recording & imaging (3); Optical light microscope (4); Axiocam attached to microscope (5); Beaker containing outflow solutions (6) ¹.

Figure 4: DLS makes use of Brownian motion of nanoparticles in a solvent in order to measure their size distribution. Launching a laser into the particles and looking at the scattering light in a specific direction allows to analyze the nanoparticle's size distribution ⁷.

Conclusions

- CaCO₃ nanoparticles nucleate and grow most rapidly at ideal Ca:CO₃ of 1
- In non-stoichiometric solutions, particle sizes remain < 10 nm up to a few hours

		Results	
THEORY	MEASUREMENT	a	

Figure 5: Besides pH, ionic strength and the supersaturation degree (Ω), the ionic ratio affects the timing of nucleation (a) and how the newly formed particles grow at Ca:CO₃ of ~0.01, 1.0, 100 (b). Induction time measurements were obtained by Cross-Polarized Light Optical Microscopy (XPL-OLM) and the time represents nucleation and subsequent growth up to 20 μ m (a). DLS (detection limit ± 0.3 nm) was used to investigate the growth of the crystals (b) ¹.

Figure 6: two well known nucleation pathways; The classical nucleation pathway assuming ion-by-ion cluster formation and subsequent growth (upper) and the aggregation pathway, forming large postcritical nucleii from preclustersized particles, followed by nucleation and subsequent growth (lower) ⁴.

Research Questions and Approach during Project

- 1) Does nucleation depend on the ionic ratio?
 - \rightarrow Measure timing and rate of nucleation vs. ionic ratio (DLS)
- 2) Are nuclei formed at high/low ionic ratio charged?

Measure nuclei charge vs. ionic ration (Electrophoretic Light Scattering; ELS) 3) Does nucleus charge determine the critical nucleus size?

→ Measure nuclei size distributions during nucleation at different ionic ratio (DLS)

4) Does nucleus charge determine the ripening pathway?

Follow ripening of nuclei with time (morphology, crystallinity, transformation using liquid-cell and

Ultimate Goal of Project

- Derive new expressions to include nucleus charge in the nucleation thermodynamics, kinetics and ripening, by combining new relations with nucleation and colloid theories
- To apply the new theory on natural settings where expected crystal formation does not occur

References

¹ Seepma S. Y. M. H., Ruiz-Hernandez, S. E., Nehrke, G., Soetaert, K., Philipse, A. P., Kuipers, B. W. M., & Wolthers, M. (2019, *in prep.*). CaCO₃ nuclei formation and growth at different $\{Ca^{2+}\}$: $\{CO_3^2-\}$ ratios in aqueous environments. ² Amjad, Z., & Demadis, K. D. (Eds.). (2015). Mineral scales and deposits: Scientific and technological approaches. Elsevier. ³ Scale Guard Professional (2013). *Limescale*. Retrieved at: <u>www.scaleguard.co.uk</u> ⁴ Gebauer, D., Völkel, A., & Cölfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science, 322(5909), 1819-1822. ⁵ Bots, P., Benning, L. G., Rodriguez-Blanco, J. D., Roncal-Herrero, T., & Shaw, S. (2012). Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crystal Growth & Design, 12(7), 3806-3814. ⁶ Nielsen, M. H., Aloni, S., & De Yoreo, J. J. (2014). In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science, 345(6201), 1158-1162. ⁷ Cordouan Technologies. Nanoparticle Size measurement using Dynamic Light Scattering. Retrieved at: www.cordouan-tech.com

Figure 7: Schematic representation of the reaction progress for the crystallization reaction in a pure system. It is a multistage crystallization pathway going from Amorphous Calcium Carbonate (ACC) \rightarrow Vaterite \rightarrow Calcite ⁵.

Figure 8: in situ TEM images of ACC, vaterite, aragonite and calcite ⁶.