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Relevancy of the Project

In Earth Sciences and Geoengineering, knowledge on crystal nucleation mechanisms is crucial to:

/

guantify fluxes in biogeochemical cycles ;
unravel the timing and rate of different geological processes > | -

unravel the physical and chemical conditions during crystal formation and prevent scaling |
evaluate crystal origin and guality and use that as a proxy for paleo-environmental conditions K ‘
optimize crystal formation for subsurface remediation, stabilization and CO, sequestration S
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Figure 1: BaSO, scaling of Figure 2: Importance of CaCO, scale

pipelines leads to high repair as it Is a nuisance in industrial and
\ and replacement costs “. household appliances °.

/ Pilot Study CaCO3 nucleation and growth\\ geothermal energy, oil and gas  formation in drinking water industries

Methods

.

Cross-Polarized Light in Optical Light Microscopy (XPL-OLM) Dynamic Light Scattering (DLS

Glass pipet ¢ _t—z— = :<: :

Figure 3: Experimental set-up during OLM-XPL Figure 4: DLS makes use of Brownian motion of nanoparticles in a solvent in order to measure their size distribution.
experiments. The growth solutions (1); Peristaltic pump Launching a laser into the particles and looking at the scattering light in a specific direction allows to analyze the
(2); Zen Lite software for recording & imaging (3); Optical nanoparticle’s size distribution .

light microscope (4); Axiocam attached to microscope (5); Conclusions

Beaker containing outflow solutions (6) *.

Results « CaCQO, na_nopartlcle_s nuclgate and grow _most raplc_lly at ideal Ca:CO, of 1
* |n non-stoichiometric solutions, particle sizes remain < 10 nm
THEORY MEASUREMENT a b up to a few hours

S | 2mn 28 hr 2 min 2.8 hr, 11':/5% Sl stable nuclei <10nm 180 min « The nucleation pathway is influenced by the ionic ratio of the solution
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Figure 5: Besides pH, ionic strength and the supersaturation degree (Q), the ionic ratio affects the timing of
nucleation (a) and how the newly formed particles grow at Ca:CO, of ~0.01, 1.0, 100 (b). Induction time

measurements were obtained by Cross-Polarized Light Optical Microscopy (XPL-OLM) and the time
represents nucleation and subsequent growth up to 20 um (a). DLS (detection limit £ 0.3 nm) was used to
Investigate the growth of the crystals (b) *.
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Figure 6: two well known nucleation pathways; The classical nucleation
pathway assuming ion-by-ion cluster formation and subsequent growth (upper)
and the aggregation pathway, forming large postcritical nucleii from precluster-
sized particles, followed by nucleation and subsequent growth (lower) .

Research Questions and Approach during Project

1) Does nucleation depend on the ionic ratio?

—»Measure timing and rate of nucleation vs. ionic ratio (DLS)
2) Are nuclel formed at high/low ionic ratio charged?

— > Measure nuclei charge vs. ionic ration (Electrophoretic Light Scattering; ELS)
3) Does nucleus charge determine the critical nucleus size?

—»Measure nuclei size distributions during nucleation at different ionic ratio (DLS)
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4) Does nucleus charge determine the ripening pathway? CaCo,
— ™ Follow ripening of nuclei with time (morphology, crystallinity, transformation using liquid-cell and | :> 0.2 oY
It | of Proj cryo-TEM) " PN T 1 ot
Ultimate Goal ot Project 1 2 4 8 16 32 64 128 256 512

« Derive new expressions to include nucleus charge in the nucleation thermodynamics,
Kinetics and ripening, by combining new relations with nucleation and colloid theories
« To apply the new theory on natural settings where expected crystal formation does not occur
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Figure 7: Schematic representation of the reaction progress for the
crystallization reaction in a pure system. It is a multistage crystallization
pathway going from Amorphous Calcium Carbonate (ACC) - Vaterite
- Calcite ~.
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Figure 8: in situ TEM images of ACC, vaterite, aragonite and calcite °.
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