
• From a theoretical perspective, the Gibbs free energy
required to separate one mole of CO2 from air at
ambient conditions is 497 kJ/kgCO2;

• In practice, real processes require larger amount of
energy. For air capture values in literature vary
significantly;

• Estimated energy requirements for DAC range from
about 4 GJ/tonCO2 to 12 GJ/tonCO2;

Synthetic fuel production

• With the Paris climate agreement, the vast majority of
world countries pledged to limit the increase in the
global average temperature to ‘well-below’ 2 °C [1];

• Depending on the sector there are different pathways to
reduce the CO2 emissions.

• The role of carbon based chemicals and fuels will
continue to play an important role in the future, e.g. for
transportation, energy storage, chemical industry.
Therefore a sustainable production is necessary.

Process modeling and optimization for production of carbon-neutral 
solar fuels
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Temperature-Vacuum Swing Adsorption (TVSA)

Introduction

Parameter
Relative humidity air
Isotherm CO2
Isotherm H2O
Heat transfer coefficient 
fluid/wall/bed
Heating temperature
Bed density
Particle diameter
Heat capacity sorbent
Air velocity
Bulk void ratio

Preliminary Results

• While the scrubbing process shows a lower exergy consumption, the TVSA has higher
productivity, along with large room for decreasing the sorbent heat of regeneration;

• The performance of DAC processes is already quite good, with having an exergy efficiency
(ηex= 6-8.3%) in the lower range of classical CCS plants (ηex=8.5-23%);

• The main challenge lies in reducing the costs significantly by keeping the energy
performance (currently around 600 $/tCO2);

Conclusions

Energy requirements DAC

Process design

Modeling approach

• Reactor design similar to air
ventilation systems;

• Cyclic adsorption process is
simulated by using a 1-D fixed
bed model [2], [5];

• Adsorption data and isotherms
[6]-[9], i.a.:

• Exemplary isotherm for CO2 and
H2O

• Bed density: 55.1 kg/m3

Thermodynamics

Air
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Optimization

Results
• As expected, most of the energy is required for the

calcination of CaCO3;

• The productivity is way smaller than classical CCS;

• The optimal CO2 recovery ranges between 50-70%;

• The results obtained are in line with previous
estimates [4];
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Energy balances for the fluid and solid phase:
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Momentum balance (Ergun equation):
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Mass transfer (LDF model)
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Optimization

• Multi-objective optimization to
minimize the specific energy
consumption and maximize
productivity;

• Three decision variables are optimized:
air velocity, absorber loading, water
content in the Ca-loop;

• The production is fixed at 1MtonCO2,
while the CO2 recovery is free to vary;

• Genetic algorithm NSGA-II used for
optimization, implemented in MATLAB;

Modeling approach

• The process is composed of two cycles: the
potassium cycle (Absorber, Crystallizer)
and the calcium cycle (Calciner, Slaker);

• The potassium cycle and the calcium cycle
are modeled in Aspen Plus separately,
using a rigorous thermodynamic model
(E-NRTL framework [3]). The two
environments are directly linked using
MATLAB which ensures the consistency of
the energy and mass balances.

• For the simulation of the air contactor
section, a rate based model was
developed;

Process design

Scheme of the air 
contactor [9]

Equilibrium data:

• Small sorbent screening was carried out
including data of 69 sorbents;

• Sorbents with negative working capacity
were excluded;
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• Multi-objective optimization with productivity and
specific energy consumption as objectives:

• Six decision variables are optimized: time steps for
adsorption, purge and regeneration, Temperature T1 and
T2, vacuum pressure;
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Atmosphere

• Capturing CO2 from a point source
using fossil fuels, e.g. coal power
plant.

• Not a sustainable process.

• Capturing CO2 from a power plant
using biomass as input.

• Competing with different utilization
of biomass.

• Capturing CO2 directly from the
ambient air.

• Relatively new and innovative
technology in early commercial
stages.
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• Exemplary iso-
therm for CO2,
H2O and N2 was
calculated on
the basis of the
remaining sor-
bents;

Exemplary isotherm for CO2

• CO2 purities above 98% can
be achieved, after
condensing water at
ambient conditions;

• High CO2 recovery is less
important in terms of
separation, but affects the
productivity;

• Reactor configuration
strongly affects overall
energy needs;

• Thanks to the low
temperature of the heat
required, exergy
requirement is considerably
lower than energy
requirement;
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Design variables along the pareto frontier


