Process modeling and optimization for production of carbon-neutral solar fuels

Alexa Grimm^a, Gert Jan Kramer^a, Matteo Gazzani^a and

Francesco Sabatino^b, Martin van Sint Annaland^b, Fausto Gallucci^b

^aCopernicus Institute of Sustainable Development, Universiteit Utrecht, Princetonlaan 8a, 3584 CB Utrecht

^bDepartment of Chemical Engineering and Chemistry, Technische Universiteit Eindhoven, Het Kranenveld 14, Eindhoven

a.grimm@uu.nl

Overview

Universiteit Utrecht

Introduction

- With the Paris climate agreement, the vast majority of world countries pledged to limit the increase in the global average temperature to 'well-below' 2 °C [1];
- Depending on the sector there are different pathways to reduce the CO_2 emissions.
- The role of carbon based chemicals and fuels will continue to play an important role in the future, e.g. for transportation, energy storage, chemical industry. Therefore a sustainable production is necessary.

Synthetic fuel production

Energy requirements DAC

• From a theoretical perspective, the Gibbs free energy required to separate one mole of CO₂ from air at ambient conditions is 497 kJ/kg_{CO2};

TU/e

- In practice, real processes require larger amount of energy. For air capture values in literature vary significantly;
- Estimated energy requirements for DAC range from about 4 GJ/ton_{co2} to 12 GJ/ton_{co2};

14000									
14000	1	1	1	1	1	1	1	1	1
							—— Gil	bbs free wo	ork required
						· · ·	—— Ac	tual work 1	equired high

Liquid Scrubbing

Temperature-Vacuum Swing Adsorption (TVSA)

Ρ

Air

Process design

Equilibrium data:

- Small sorbent screening was carried out including data of 69 sorbents;
- Sorbents with negative working capacity were excluded; **Exemplary isotherm for CO**₂

298 K

373 K

Exemplary isotherm for CO_2 , H_2O and N_2 was calculated on the basis of the remaining sorbents; Time

Component and total mass balances:

- The process is composed of two cycles: the potassium cycle (Absorber, Crystallizer) and the *calcium cycle* (Calciner, Slaker);
- The potassium cycle and the calcium cycle are modeled in Aspen Plus separately, using a rigorous thermodynamic model (E-NRTL framework [3]). The two environments are directly linked using MATLAB which ensures the consistency of the energy and mass balances.
- For the simulation of the air contactor model was section, a rate based developed;

Results

- As expected, most of the energy is required for the calcination of CaCO₃;
- The productivity is way smaller than classical CCS;

Pareto Frontier

• The optimal CO₂ recovery ranges between 50-70%;

B

The results obtained are in line with previous estimates [4];

• Multi-objective optimization to minimize the specific energy consumption maximize and productivity;

 H_2O

- Three decision variables are optimized: air velocity, absorber loading, water content in the Ca-loop;
- The production is fixed at 1Mton_{CO2}, while the CO₂ recovery is free to vary;
- Genetic algorithm NSGA-II used for optimization, implemented in MATLAB;

Breakdown of energy requirements for point A and B

adsorption purge regeneration repressurization

Modeling approach

- Reactor design similar to air ventilation systems;
- Cyclic adsorption process is simulated by using a 1-D fixed bed model [2], [5];
- Adsorption data and isotherms [6]-[9], i.a.:
- Exemplary isotherm for CO₂ and $H_{2}O$
- Bed density: 55.1 kg/m³

Optimization

- Multi-objective optimization with productivity and specific objectives: consumption energy as $Pr = \frac{m_{CO2}/t_{cycle}}{V_{Ads}}$ $E = \frac{1}{\dot{m}_{co2}} \left(Q_{purge} + Q_{prod} + W_{vac,purge} + W_{vac,prod} \right)$
- Six decision variables are optimized: time steps for adsorption, purge and regeneration, Temperature T₁ and T_2 , vacuum pressure;

Pareto Frontier (preliminary results)

Exergy requirement

sorbent

Preliminary Results

- CO_2 purities above 98% can achieved, after be at condensing water ambient conditions;
- High CO₂ recovery is less in important terms of separation, but affects the productivity;
- configuration overall

low

heat

Conclusions

- While the scrubbing process shows a lower exergy consumption, the TVSA has higher \bullet productivity, along with large room for decreasing the sorbent heat of regeneration;
- The **performance** of DAC processes is already quite good, with having an exergy efficiency $(\eta_{ex} = 6-8.3\%)$ in the lower range of classical CCS plants $(\eta_{ex} = 8.5-23\%)$;
- The main challenge lies in reducing the costs significantly by keeping the energy performance (currently around 600 $/t_{co2}$);

Authors acknowledge Shell Global Solution International B.V. for funding this research activity.

References

- [1] S. Fuss et al., Betting on negative emissions, 2014.
- [2] N. Casas et al., A parametric study of a PSA process for pre-combustion CO2 capture, 2013.
- [3] C.-C. Chen, A local composition model for the excess gibbs energy of aqueous electrolyte systems. I: single completely dissociated electrolyte single solvent systems. A.I.CH.E. J. 28, 588, 1982.
- [4] E. S. Sanz-Perez, et al., *Direct capture of CO2 from ambient air*, 2016.
- [5] F. Capra et al. MO-MCS, a derivative free algorithm for the multiobjective optimization of adsorption processes, 2018.
- [6] C. Gebald, T. Zimmermann, and P. Tingaut. Porous adsorbent structure for adsorption of CO2 from a gas mixture, 2014.
- [7] J. A. Wurzbacher, C. Gebald, S. Brunner, and A. Steinfeld, *Heat and mass transfer of temperature-vacuum swing desorption* for CO2capture from air, Chem. Eng. J., vol. 283, pp. 1329–1338, 2016.
- [8] C. Gebald, W. Meier, N. Repond, T. Rüesch, and J. A. Wurzbacher. *Direct air capture device*, patent, 2015.
- [9] C. Gebald, N. Piatkowskl, T. Rüesch, J. A. Wurzbacher. *Low-pressure drop structure of particle adsorbent bed for adsorption gas* separation process, patent, 2014.