Process modeling and optimization for production of carbon-neutral
solar fuels

Alexa Grimm?, Gert Jan Kramer?, Matteo Gazzani® and

Francesco Sabatino®, Martin van Sint Annaland?, Fausto Gallucci®
aCopernicus Institute of Sustainable Development, Universiteit Utrecht, Princetonlaan 8a, 3584 CB Utrecht I U / e
bDepartment of Chemical Engineering and Chemistry, Technische Universiteit Eindhoven, Het Kranenveld 14, Eindhoven

Universiteit Utrecht

a.grimm@uu.nl

Overview

Introduction Synthetic fuel production Energy requirements DAC

* With the Paris climate agreement, the vast majority of * From a theoretical perspective, the Gibbs free energy
world countries pledged to limit the increase in the T N[ DAC-route required to separate one mole of CO, from air at
global average temperature to ‘well-below’ 2 °C [1]; ambient conditions is 497 ki/kgq,;

Depending on the sector there are different pathways to In practice, real processes require larger amount of
reduce the CO, emissions. I I energy. For air capture values in literature vary

The role of carbon based chemicals and fuels will significantly;

continue to play an important role in the future, e.g. for Fuel Fuel Fuel Estimated energy requirements for DAC range from
. . . Fuel use <— . Fuel use <= ST Fuel use <= S e
transportation, energy storage, chemical industry. ynthesis ynthesis ylsEElE about 4 GJ/ton,, to 12 GJ/ton,;

Therefore a sustainable production is necessary. T T T
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 Small sorbent screening was carried out

Crystallizer including data of 69 sorbents;

Air out ‘ Sorbents with negative working capacity
CaCO; slurry were excluded; ,
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 The process is composed of two cycles: the + Multi-objective optimization to Modeling approach Scheme of the air
potassium cycle (Absorber, Crystallizer) minimize the specific energy
and the calcium cycle (Calciner, Slaker); consumption and maximize
productivity;
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e Reactor design similar to air contactor [9] ot s+ pp ) =L =0
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ventilation systems; j

. . Energy balances for the fluid and solid phase:
The potassium cycle and the calcium cycle Cyclic adsorption process is ) oT  dp aT

. . . . .. &Cy + ppCs + ppCads) =— — e =— + uly—
are modeled in Aspen Plus separately, * Three decision variables are optimized: simulated by using a 1-D fixed (et oGt pufass) 5~ e+ 1,

N
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using a rigorous thermodynamic model air velocity, absorber loading, water bed model [2], [5]; iri o —pr(—AH,-)%H%(T—TameO

(E-NRTL  framework  [3]). The two content in the Ca-loop; Adsorption data and isotherms 5 D= Momenturjnziaalance(Ergunequation):

environments are directly linked using . 1o production is fixed at 1Mton.,,, [6]-[9], i.a.: 7 p _ 150(1-e)? 1501 - &)?

MATLAB which ensures the consistency of : : S 0z gz ¢ 3d
Y while the COZ recovery IS free to vary,  Exemplary isotherm for COZ and o /////ﬁ’j/// z €p%p €pdp
the energy and mass balances. . _ 0.0 : gy, Mass transfer (LDF model)
. _ . Genetic algorithm NSGA-Il used for 2 3 2 (q® —q) il N
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For the simulation of the air contactor optimization, implemented in MATLAB; Bed density: 55.1 kg/m

section, a rate based model was Optimization

developed:; Breakdown of energy o o , o Preliminary Results
requirements for point A and B  Multi-objective optimization with  productivity and

specific  energy  consumption as  objectives: * CO, purities above 98% can

Results

e As expected, most of the energy is required for the pr. _ Mcoz/teyele be achieved, after
calcination of CaCOg; - | " T Vaas condensing water at

1

E = eon (qurge + Qprod + I/Vvac,purge + anc,prod) ambient conditions;
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The productivity is way smaller than classical CCS;

Exergy [MJ/kgcoz]

- Six decision variables are optimized: time steps for High CO, recovery is less

BASU ‘ : : important in terms of
. . . . . ¢ Ebaver adsorption, purge and regeneration, Temperature T, and P
The results obtained are in line with previous | S i pHion, purs 5 ’ P 1

estimates [4]; Pump | T,, vacuum pressure; separation, but affects the
’ productivity;

ne optimal CO, recovery ranges between 50-70%;
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Thanks to the low
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Solid sorbent process re q u i re m e nt;
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