Resolving locked asperities and slip deficit in unlocked regions: A new inversion method applied in the South America subduction zone Matthew Herman, Rob Govers, Department of Earth Sciences, Utrecht University Universiteit Utrecht

Pseudo-coupling Model

effect conceptually (Herman et al., 2018).

In this study, we incorporate the physics of pseudo-coupling into an inter-seismic inversion so that we can determine:

Where and how much of the subduction plate interface is locked? What is the corresponding slip deficit accumulation rate?

South America Subduction Zone

Seismotectonics The oceanic Nazca plate subducts eastward beneath South continental the America plate from Chile to Colombia. This subduction zone has hosted 12 Mw 7.5+ earthquakes in the past 25 years (red symbols indicate these earthquake epicenters and red lines show 2, 5, and 10 meter slip contours). There is also a centuries-long historical record of great earthquakes (Kelleher, 1972) (rupture extents of these events are indicated by red bars west of the trench; Mw 8.0+ events are labeled with their dates).

Geodetic Observations

The upper plate is densely instrumented by continuous and campaign GNSS stations measuring surface motions. We use the inter-seismic velocity field (measured before the Mw 7.5+ earthquakes) as the constraints on the plate interface locking distribution. We also test how much of the velocities can be explained by forearc sliver motions.

Conclusions

- Maximum of 30% of plate interface area is locked
- Earthquakes initiate inside or near edges of high probability locked zones
- Mw 8+ earthquakes occur in regions with at least 10% of fault area locked
- Large earthquakes may propagate outside of high-probability locked zones into regions with slip deficit rate \geq 25-50% of convergence rate
- Slip deficit rate near trench is $\geq 25\%$ of convergence rate
- Forearc sliver motion ~1/2 that of previous studies

