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Bridging time scales from tectonics to dynamic earthquake rupture

Tectonics
- Thermo-mechanical evolution of convergent margins 
- For millions years and over 100-1000’s km’s
- Static friction 
- Δt = 1000 years

How thermal coupling increases Mmax and b-value 
>> Convergence rate not only increases seismic rate, but also maximum magnitude and proportion of large events (b)

(1) 10 million years of thermo-mechanical evolution of continent-continent collision leads to setup in Fig. 1A

(2) Spontaneous ruptures of various sizes and types are generated (see also Fig. 1B)

Earthquake-like events on various faults:
- Rate-dependent friction
- Inertia added
- Δt = 1-5 years

- grid size convergence through
 W=Wm*log(1+K(V0/Vp))

All done using same code based on
- 2D �nite-di�erences on fully staggered grid w. marker-in-cell technique
- to solve conservation of mass, momentum and heat
- using a visco-elasto-plastic rheology and laboratory-based parameters for di�erent lithologies
- with some hydro-  (e.g., slab dehydration and �uid �ow) and chemical components (e.g., serpentinization, melting)

See: Gerya & Yuen, PEPI, 2007; van Dinther et al., JGR, 2013a,b; GRL 2014; Dal Zilio et al., EPSL, 2018; Herrendoerfer et al., JGR, 2018; Preuss et al., EarthArXiV, 2019; in prep.

A summary of what seimo-thermo-mechanicanical models (STM) can do: 

Rate-and-state dependent friction 
 - invariant reformulation w. 
- From periodic earthquake cycles to slow and aseismic slip
- Δt = milliseconds - years

- resolve interseismic, coseismic and postseismic phase
- resolve nucleation size and cohesive zone
- accurate and convergent solution on prede�ned fault
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(1) STM predicts secondary zone of uplift

(2) Data con�rm secondary zone of uplift

Lithosphere mechanics a�ects surface displacements 

See: van Dinther et al.,PAGeo, 2019
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(1) How sediment thickness in�uences subduction dynamics and subduction zone seismicity

Supercycles?

How thermo-mechanical coupling impacts seismicity 

(2) Potential to clarify global data and provide explanations (3) Why modeling long-term dynamics is important 

See: Brizzi et al., EPSL, subm.

See: Dal Zilio et al., EPSL, 2018

See: D’ Acquisto et al., JGR, n. subm.
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Dynamic earthquake rupture
- Seismic wave propagation
- Fault evolution
- Δt = milliseconds

Low sediment thickness

High sediment thickness
(X) Relation and magnitude agree with regional observations

(5) Mechanism:
- Faster penetration of cooler temperatures to larger depths
- Larger brittle portion leads to larger and relative more larger events

(3) Combined lead to Gutenberg-Richter law

(4) Regional data con�rm model predictions

Low Vc

High Vc

How deep rheology and temperature a�ects seismicity
(4) Mechanism 2: Mass conservation following slab penetration

(3) Mechanism 1: Elastic rebound after buckling layered lithosphere  

(3) Seismicity driven by slab pull for �rst time

(2)  Weak lower crust and hot mantle wedge >> 
are needed to reproduce stress and seismicity

(4) Slab 
temperature
and pull a�ect
seismicity

World stress map data:

2012 Emilia 
sequence

(1) Combine geological and geophysical data to simulate Northern Appenines (Italy)

Extension Compression

Lower crust: wet quartzite

Lower crust: plagioclase

Lower crust: granulite

These examples illustrate how thermo-mechanical coupling, tectonics and rheology a�ect seismicity. 
 More work and potential is being demonstrated by STM group at ETHZ/UU. 
Coupling with �uids is illustrated in the next poster by Petrini et al. 
Coupling with chemisty is illustrated in the presentation of Gerya et al.  
Meanwhile also developments in 3D and HTM coupling are nearing completion        >>

Summary << 3D Long-term deformation

     3D Dynamic earthquake rupture >>

Pranger et al., in prep.


