Role of thermo-mechanical processes in seismicity: overview of STM modeling
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Bridging time scales from tectonics to dynamic earthquake rupture

A summary of what seimo-thermo-mechanicanical models (STM) can do:
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Rate-and-state dependent friction Dynamic earthquake rupture
- invariant reformulation w. 711 = dyield - Seismic wave propagation

- From periodic earthquake cycles to slow and aseismic slip - Fault evolution

- At = milliseconds - years - At = milliseconds

Earthquake-like events on various faults:
- Rate-dependent friction

- Inertia added

- At =1-5 years

Tectonics

- Thermo-mechanical evolution of convergent margins
- For millions years and over 100-1000's km's

- Static friction

- At =1000 years

- grid size convergence through
W=Wm*log(1+K(V0/Vp))

- resolve interseismic, coseismic and postseismic phase
- resolve nucleation size and cohesive zone
- accurate and convergent solution on predefined fault

All done using same code based on

- 2D finite-differences on fully staggered grid w. marker-in-cell technique

- to solve conservation of mass, momentum and heat

- using a visco-elasto-plastic rheology and laboratory-based parameters for different lithologies

- with some hydro- (e.g., slab dehydration and fluid flow) and chemical components (e.g., serpentinization, melting)

See: Gerya & Yuen, PEPI, 2007; van Dinther et al., JGR, 2013a,b; GRL 2014, Dal Zilio et al., EPSL, 2018; Herrendoerfer et al., JGR, 2018; Preuss et al., EarthArXiV, 2019; in prep.

How thermo-mechanical coupling impacts seismicity

(1) How sediment thickness influences subduction dynamics and subduction zone seismicity

How thermal coupling increases Mmax and b-value

>> Convergence rate not only increases seismic rate, but also maximum magnitude and proportion of large events (b)

subducting plate accretionary wedge overriding plate

(1) 10 million years of thermo-mechanical evolution of continent-continent collision leads to setup in Fig. TA
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(2) Spontaneous ruptures of various sizes and types are generated (see also Fig. 1B) Deepening of the
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(5) Mechanism: @ seismogenic zone dip 0, @ sediment thickness Teq

- Faster penetration of cooler temperatures to larger depths
- Larger brittle portion leads to larger and relative more larger events
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(3) Why modeling long-term dynamics is important
9.5 '

(2) Potential to clarify global data and provide explanations

(4) Regional data confirm model predictions 10,0 [rrrrerrr et
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See: Dal Zilio et al., EPSL, 2018
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How deep rheology and temperature affects seismicity

(1) Combine geological and geophysical data to simulate Northern Appenines (ltaly)

Lithosphere mechanics affects surface displacements

(1) STM predicts secondary zone of uplift (4) Mechanism 2: Mass conservation following slab penetration
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(2) Data confirm secondary zone of uplift
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(2) Weak lower crust and hot mantle wedge >>
are needed to reproduce stress and seismicity
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(3) Seismicity driven by slab pull for first time
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(3) Mechanism 1: Elastic rebound after buckling layered lithosphere
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(4) Slab
temperature
and pull affect
seismicity
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Summary

These examples illustrate how thermo-mechanical coupling, tectonics and rheology affect seismicity.
More work and potential is being demonstrated by STM group at ETHZ/UU.

Coupling with fluids is illustrated in the next poster by Petrini et al.

Coupling with chemisty is illustrated in the presentation of Gerya et al.

Meanwhile also developments in 3D and HTM coupling are nearing completion

<< 3D Long-term deformation

3D Dynamic earthquake rupture >>

>> Pranger et al., in prep.

Tirna (1) —_.
o L [=] .
[ SRR
1 _.-"- H
‘B i
il -




