Role of thermo-mechanical processes in seismicity: overview of STM modeling

Ylona van Dinther*(1,2) in collaboration with Taras Gerya (2) and students at ETH Zurich: PhD students: Luca Dal Zilio, Robert Herrendoerfer, Iris van Zelst, Simon Preuss, Casper Pranger, Sylvia Brizzi, and MSc students: Mario D'Acquisto and Lukas Preiswerk.

(1) Earth Sciences, Utrecht University (NL), (2) Geophysics, ETH Zurich (CH). *Contact: y.vandinther@uu.nl

Bridging time scales from tectonics to dynamic earthquake rupture

1C 1A Pro-foreland basin **1B** Retro-foreland basin Orogenic wedge 10 0 rate [m/s] Depth (km) ୍ଲି 20 back-thrusting 60 Depth Lower continental plate Upper continental plate 40 10^{-3} 90 Slip 60 120 10^{-8} 2150 1750 2050 2250 1650 1850 1950 80 50 60 70 80 90 100 Distance (km) Time [yr]

Utrecht University

110

Tectonics

- Thermo-mechanical evolution of convergent margins
- For millions years and over 100-1000's km's
- Static friction
- $-\Delta t = 1000$ years

- **Earthquake-like events on various faults:** - Rate-dependent friction
- Inertia added
- $-\Delta t = 1-5$ years
- **Rate-and-state dependent friction** - invariant reformulation w. $\tau_{II} = \sigma_{yield}$ - From periodic earthquake cycles to slow and aseismic slip $-\Delta t = milliseconds - years$

Dynamic earthquake rupture - Seismic wave propagation - Fault evolution $-\Delta t = milliseconds$

All done using same code based on

- 2D finite-differences on fully staggered grid w. marker-in-cell technique

A summary of what **seimo-thermo-mechanicanical models (STM)** can do:

- to solve conservation of mass, momentum and heat
- using a visco-elasto-plastic rheology and laboratory-based parameters for different lithologies
- with some hydro- (e.g., slab dehydration and fluid flow) and chemical components (e.g., serpentinization, melting)
- resolve interseismic, coseismic and postseismic phase
- resolve nucleation size and cohesive zone
- accurate and convergent solution on predefined fault
- grid size convergence through W=Wm*log(1+K(V0/Vp))

See: Gerya & Yuen, PEPI, 2007; van Dinther et al., JGR, 2013a,b; GRL 2014; Dal Zilio et al., EPSL, 2018; Herrendoerfer et al., JGR, 2018; Preuss et al., EarthArXiV, 2019; in prep.

How thermal coupling increases Mmax and b-value

>> Convergence rate not only increases seismic rate, but also maximum magnitude and proportion of large events (b)

(1) 10 million years of thermo-mechanical evolution of continent-continent collision leads to setup in Fig. 1A

(2) Spontaneous ruptures of various sizes and types are generated (see also Fig. 1B)

(3) Combined lead to Gutenberg-Richter law

How thermo-mechanical coupling impacts seismicity

(1) How **sediment thickness** influences subduction dynamics and subduction zone seismicity

(3) Why modeling long-term dynamics is important

How deep rheology and temperature affects seismicity

(1) Combine geological and geophysical data to simulate Northern Appenines (Italy)

Lithosphere mechanics affects surface displacements

(1) STM predicts secondary zone of uplift

(4) Mechanism 2: Mass conservation following slab penetration

0.25

 μ_{s}

0.50

long-term dynamics,

no sedimenus (adapting friction) no long-term dynamics, no thermal coupling

Summary

These examples illustrate how thermo-mechanical coupling, tectonics and rheology affect seismicity. More work and potential is being demonstrated by STM group at ETHZ/UU. Coupling with **fluids** is illustrated in the next poster by Petrini et al. Coupling with **chemisty** is illustrated in the presentation of Gerya et al. Meanwhile also developments in 3D and HTM coupling are nearing completion >>

<< 3D Long-term deformation

3D Dynamic earthquake rupture >>

Pranger et al., in prep.

