

Faculty of Veterinary Medicine Institute for Risk Assessment Sciences (IRAS) Toxicology Division

www.uu.nl/organisatie/faculteit-diergeneeskunde

Screening for Neurotoxicity Adverse Outcome Pathway (AOP) Perturbations in Water Quality Monitoring

Ioanna S. Gkika¹, Valentin De Gussem^{1,2}, Michiel T. O. Jonker¹, Nynke I. Kramer¹, Remco H.S Westerink¹, Annemarie van Wezel³

1 Utrecht University, Institute for Risk Assessment Sciences (IRAS), P.O. Box 80.178, 3508 TD Utrecht, The Netherlands. 2 Utrecht University, Copernicus Institute of Sustainable Development, PO Box 80125, 3508 TC Utrecht, The Netherlands. 3 University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), P.O. Box 94248, 1090 GE Amsterdam

Aim: Propose specific in vitro assays to include in Effect Directed Monitoring (EDM) test batteries that cover potential toxic effects not yet screened for by water quality monitoring test facilities

Why in vitro bioassays?

- 3R principle compliant

Experimental procedure for MEA How different MIEs³ can end up causing altered mean network firing rates (MFR) and patterns

- Non targeted screening \rightarrow effects of undefined mixtures
- More hazard-oriented
- Amenable to High Throughput Screening (HTS)

Approach

- 1. Literature review \rightarrow database of currently applied *in vitro* bioassays
- 2. Comparison with database of representative chemicals of emerging concern and their related human-relevant AOPs \rightarrow identify KE's not yet screened for in water quality monitoring
- 3. Selection of an assay gap \rightarrow Neurotoxicity
- 4. Literature review \rightarrow database of available *in vitro* bioassays measuring perturbations of KE¹ in human neurotoxicity AOPs
- 5. Selection of an assay to evaluate its potential for use in water quality monitoring

Criteria for the selection of micro-electrode array assay (MEA)

- Endpoint related to a KE commonly found in neurotoxicity AOPs \rightarrow Network Activity (e.g. Mean Firing Rate)
- High Throughput potential
- Ability to detect wide range of neurotoxicants
- Overlap with chemicals that have already been tested with EMERCHE chemical list

Criteria for the selection of chemicals

electrical network activity with MEA and readouts (spike raster plot, activity heat maps and example traces of individual field potentials illustrating the degree and pattern of neuronal activity of the primary rat cortical culture) [3]

measured baseline activity (% control)

[8]

- Different neurotoxicity AOPs covered
- Chemicals that have been found negative and positive *in vitro* and are or are not known neurotoxicants (3rd column of **Table 1**)
- Toxicokinetic parameters available in EPA dashboard for IVIVE² modelling (unbound fraction in human plasma, in vitro intrinsic hepatic clearance etc.)
- Included in the EMERCHE and ToxCast list of chemicals (*except fluoxetine)

Research questions

- Can the MEA assay be used in water quality monitoring to cover the gap of human neurotoxicity adverse outcome pathways?
- How much do toxicokinetic parameters affect the results of the assay?

Next Steps

- Evaluate the assay by testing it in the lab with neurotoxicants found in water and/or use literature data (concentration-response curves)
- Quantify toxicokinetic parameters (amount of chemical in media and cells) to establish whether or not they affect the result and if it is essential to quantify them when performing an assay

Take home message

There are perspectives to improve neurotoxicity screening in water quality monitoring, be implementing an assay that can detect a wide

en e			U SI OW	vivo studies	· ype of blacky	
Fluoxetine	Inhibits the serotonin re-uptake transporter protein (SSRI)	Positive in MEA (<i>in vitro</i>) and is a known neurotoxicant <i>in vivo</i>	4,33	Not available		[2]
Fipronil	Binding to the picrotoxin site of ionotropic GABA receptors	Positive in MEA (<i>in vitro</i>) and is a known neurotoxicant <i>in vivo</i> ; lowest NOAEL value (along with Diazinon)	4,28	0,02 mg/kg bw/day	2-year oral / rat	[1], [4]
				0,9 mg/kg bw	DNT oral / rat	
Cypermethrin	Sodium channel modulator	Positive in MEA, but produced only a small decrease in MFR and is a known neurotoxicant <i>in vivo</i>	0,88	0,5 mg/kg bw/day	2-year rat DNT study	[5]
				20 mg/kg bw	Rat acute neurotoxicity study	
Aldicarb	Acetylcholinesterase (AChE) inhibition	Compare sensitivity of MEA with that of AChE inhibition assay	6,04	0,01 mg/kg bw/day	Clinical signs of neurotoxicity from human dietary exposure study	[6]
Diazinon	Acetylcholinesterase (AChE) inhibition	Compare results with those from AChE inhibition assay	1,25	2,5 mg/kg bw	Acute toxicity and neurotoxicity rat studies	[7]
				0,017 mg/kg bw/day	90-day neurotoxicity rat study	
Flusilazole	Ergosterol biosynthesis inhibition	Was found positive in MEA (<i>in vitro</i>) but is not considered a neurotoxicant <i>in vivo</i>	3,41	Not available		[1]
Spiroxamine	Fungal RNA polymerase inhibition	Was found positive in MEA (<i>in vitro</i>) but is not considered a neurotoxicant <i>in vivo</i>	3,7	Not available		[1]
Acetaminophen	Not identified	Negative control	2,89	Not available		[1]

range of neurotoxic chemicals

Table 1

Chemicals of interest to derive or use from literature concentration-response relationships. The chemicals were selected in order to cover the scenarios mentioned in the 3rd column of the table. The logK_{ow} values as a measure of lipophilicity along with the NOAELs from mammal neurotoxicity studies are also presented.

 Abbreviations/Clarifications 1) KE: Key events 2) IVIVE: In vitro-in vivo extrapolation 3) MIEs: Molecular Initiating Events * Oral doses estimated based on self reports of amount of commodities consumed, measured residue levels in commodities, and average body weights for given age and sex 	 References P. Valdivia et al., "Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds," Neurotoxicology, vol. 44, pp. 204–217, 2014. B. Scelfo, et al., "Application of multielectrode array (MEA) chips for the evaluation of mixtures neurotoxicity," <i>Toxicology</i>, vol. 299, no. 2–3, pp. 172–183, 2012. A. M. Tukker et al., "Is the Time Right for In Vitro Neurotoxicity Testing Using Human iPSC-Derived Neurons?," vol. 33, no. 3, pp. 261–271, 2016. Bundesinstitut fur Risikobewertung, "Health assessment of individual measurements of fipronil levels detected in foods of animal origin in Belgium," no. 016, pp. 1–5, 2017. M. Arena et al., "CONCLUSION ON PESTICIDES PEER REVIEW Peer review of the pesticide risk assessment of the active substance cypermethrin," vol. 16, no. July, 2018. U. E. Integrated Risk Information System (IRIS), "Chemical Assessment Summary for Aldicarb (CASRN 116-06-3)," pp. 1–22, 1993. EFSA Scientific Report, "Conclusion regarding the peer review of the pesticide risk assessment of the active substance diazinon finalized : 23 June 2006," no. L, 	Acknowledge funding from the NWO Partnership program TTW-STOWA-KWR-TKI Watertechnology (number 15760)