Surface ocean warming and hydrographic change in the North Atlantic during the Middle Eocene Climatic Optimum

Robin van der Ploeg1, Margot J. Cramwinckel1, Thomas J. Leutert2, Steven M. Bohaty3, Chris D. Fokkema1, Rogier J. Hidding1, Ilja J. Kocken1, A. Nele Meckler2, Anne E. van der Meer1, Jack J. Middelburg1, Inigo A. Müller1, Francien Peterse1, Gert-Jan Reichart1,4, Stefan Schouten1,4, Philip F. Sexton5, Paul A. Wilson3, Martin Ziegler1, Appy Sluijs1

1) Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
2) Bjerknes Centre for Climate Research and Department of Earth Science, University of Bergen, Bergen, Norway
3) Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
4) NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, The Netherlands
5) School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom

How global was MECO warming?
- IODP Sites U1408 and U1410 (Newfoundland Drifts):
 - highest resolution MECO interval recovered so far
 - multiproxy temperature reconstructions possible due to well-preserved foraminifera and abundant organic matter

A new U1408/U1410 MECO composite record
- Revised stratigraphic correlations for MECO interval based on XRF data
- MECO peak warmth interval likely missing at U1408 but present at U1410

High-resolution clumped isotope paleothermometry and multiproxy temperature reconstructions
- Surface mixed-layer warming of 4 °C during MECO inferred from Δemperature measurements on two species of planktonic foraminifera
- Combined foraminiferal Δδ18O and δ18O data yield seawater δ18O increase of ~0.5 ‰, may indicate transient salinization of North Atlantic
- Multiproxy comparison between Δemperature, Mg/Ca and TEX86 results in roughly similar estimates of warming (2-4 °C), but absolute values differ greatly and depend on calibration used