The importance of mantle azimuthal anisotropy for

the coupling of Earth’'s normal modes
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Alm To show how large the effect of realistic mantle azimuthal anisotropy is on normal-mode data and assess whether normal modes are well-suited to infer from them the
Earth’s azimuthally anisotropic structure.
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Figure 4: Measured and predicted degree-two structure coefficients ct for self-coupled modes ,S; (a)
and ,5;3 (b) and cross-coupled modes (S;3 — (T14 (€). The ,S; measurements are from Deuss et al.

(2013); the ,S;3 and ,S;53 — oT14 measurements are from Resovsky & Ritzwoller (1998). Predictions as 315 3.20 3.25 f 3.30 3.3 3.40
indicated in the legend show the effect of adding either mantle density variations or azimuthal anisotropy requency (miz)

(YB1314ani) to calculations for mantle velocity model SP12RTS. The ¢! coefficients define how a mode’s
frequency is affected by Earth structure of degree s and order t. Measured c{ coefficients are generally
used to infer Earth structure from normal-mode data.

Figure 3: Synthetic vertical-component spectra for the 9 June 1994 Bolivia
earthquake. The spectra as indicated in the legend show the effect of adding either
mantle density variations or azimuthal anisotropy (YB1314ani) to calculations for
mantle velocity model SP12RTS (Koelemeijer et al. 2015).
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Koelemeijer et al. (2017) used measurements of Stoneley
modes (Koelemeijer et al. 2013) to infer the density of the
arge low shear velocity provinces (LLSVPs) in the
owermost mantle under Africa and the Pacific, finding light
_LSVPs as opposed to earlier studies (e.g., Ishii & Tromp N\ &
1999) e G~

How can we obtain mantle azimuthal anisotropy
from normal-mode data?
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