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Debris-covered glaciers make up a significant fraction of glacier surface
(~15%) and ice volume (~30%, [1]) in High-Mountain Asia. To estimate melt
from these glaciers and their contribution to stream flow remains difficult
because of a lack of spatial data and the challenge to accurately reproduce
the energy transfer through debris to the ice surface. Using high-resolution
DEM data from 6 consecutive years in the Nepalese Himalaya, we are able to
quantify mass loss and use it to constrain a new energy balance model and
develop a simpler temperature based index model.

Research aim
- establish a distributed energy balance and simple tempera-
ture index model for sub-debris melt

- What is the sensitivity to debris properties?

Study site + Model

Lirung Glacier (6.5 km?, 17% debris-covered, 4044-6615 m a.s.l., 28.2N, 85.6E)
in the Central Himalaya has been researched since many decades, including

recent studies on turbulent fluxes, supraglacial ponds and cliffs as well as
debris redistribution [2,3,4,5]. Climate data and concurrent high-resolu-
tion DEMs from nine UAV flights are available between 2012 and 2018.
Debris temperature and moisture measurements as well as depth meas-
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Figure 3: (a) Distributed mass loss in monsoon (top) and during winter (bottom), with distributions for 50m elevation
bands shown right. (b) Mass loss against slope and curvature during three monsoon seasons.

Measured mass loss

- mass loss heterogeneities, larger rates at terminus and higher elevations

- high melt rates in monsoon (-0.5to-2.5ma")
- link to topographic variables difficult, more melt in depressions and on mounds
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Figure 4: (a) Distributed measured and modelled mass loss at 15 m resolution. Total measured volume is 440 000 m> vs a
modelled volume of 435 000 m®. (b) Measured minus modelled debris thickness for available pits and GPR locations.

Modelled mass loss

- melt patterns on the large scale are well reproduced
- model remains sensitive to debris thickness and conductivity
- multi-layer solution of the debris pack is computationally expensive in space

Conclusions and outlook

1 refreezing: saturated water content freezes in the debris (~10° m?; 5-10% of the mass
loss in monsoon) and is released only days after debris surface is above freezing
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Carlo approach for each cell.
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Local topography is accounted for in radiation input.



