¹ Department of Physical Geography, Utrecht University, Utrecht, the Netherlands. Presenting author: a.p.iwantoro@uu.nl

Introduction

The morphology of river bifurcations often evolves asymmetrically, resulting in an avulsion (unstable bifurcation). Observations suggest that bifurcations in tidally influenced systems are stable; however, the stability theory has not been applied to tidal systems. This is because of the presence of bi-directional flows induced by tides, suspended load dominated condition, and typical low channel slopes in tidal deltas and estuaries.

Objective

we aim to study the morphological stability of bifurcations in the range from river- to tide-dominated systems.

Methods

Develop 1D numerical model that solves

- 1D shallow water equations: mass and the momentum balance
- sediment transport: van Rijn 1984
- Sediment division: Bolla Pittaluga et al. (2015)
- Mophological update: Exner equation

Perturb symmetric bifurcation by deepening one of the branches

Does asymmetry grow? $depth \ ratio = \frac{h_1 - h_2}{1}$

