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Background: The extreme ice-free greenhouse climate of the early 
Eocene (56–49 Ma) (Figure 1) is the warmest interval of the  
Cenozoic and is characterized by CO2 levels much higher than  
today (~600–2000 ppm)1,2. Deep-sea benthic foraminiferal δ13C en 
δ18O records  have revealed that towards the Early Eocene Climatic  
Optimum (EECO; 52–50 Ma) (Figure 1) a long-term warming trend 
is punctuated by a series of transient (10–100 kyr) episodes of 
global warming3,4,5. These events are termed hyperthermals (e.g. 
PETM, ETM-2/H1 and ETM-3/K) and reflect major short-lived  
perturbations of the carbon cycle and climate system (Figure 2)3,4,5.

At the moment most of Cenozoic deep-water temperature reconstructions are based on  
foraminiferal δ18O. However, uncertainties are contained in the assumptions underlying this proxy6,7. 
One major assumption concerns the estimation of δ18O of the seawater, which is controlled by ice  
volume and salinity, and is poorly constrained for the earth's past6,7. Furthermore, physiological factors 
(vital effects) cause additional uncertainty in the temperature estimates6,7. The relatively new proxy  
carbonate clumped isotopes (Δ47) is solely controlled by temperature8 and therefore has high potential for 
producing robust constraints on paleotemperature7. Here, we show its first application for deep-ocean 
environments during the early Eocene. 
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Figure 1. Cenozoic climate evolution4 

-	 First independent constraints on deep-water temperatures during the early Eocene: 	
	 13.5±2.9(95% CI) °C for background conditions 
- 	 Clumped isotopes show that bottom water temperatures substantially rose to 		
	 17±3.0(95% CI) °C during H2 event
- 	 In combination with δ18O of foraminiferal calcite, calculation of 	seawater δ18O is  
	 possible. A substantial increase in seawater δ18O across H2 is revealed and may be 		
	 caused by an increase in salinity
- 	 Our results could indicate a change in ocean circulation during hyperthermals, 		
	 represented by a shift in the source region(s) of deep waters, i.e. deep-water  
	 forma	tion in warmer and more saline sea surface waters   
-	 Future work: (1) continue with adding measurements to reduce temperature  
	 uncertainties, (2) reconstruct and compare different ocean basins and latitudes, and (3) 	
	 modeling of early Eocene climate, hyperthermals and ocean circulation (in cooperation 	
	 with IMAU) 													          

METHODS RESULTS
Carbonate clumped isotope paleothermometry (Δ47)
-   Degree of clumping of heavy isotopes is only dependent on temperature (independent of fluid composition)8

-   Foraminiferal cultures do not show vital/species effects for Δ47
8

-   However, because the proxy temperature sensitivity is low and the analytical target rare (mass-47) many replicate  
     measurements (~30) are required
Utrecht University clumped isotope lab
-   Reconstructing deep-water temperatures across ETM-2/H1 and H2 using material from ODP Sites 1265 and 1267 
     (Walvis Ridge, SE Atlantic)
-   Benthic foraminifera Nutallides truempyi was measured for Δ47 on a Thermo 253+ with Kiel-IV instrument9,10. 
     For each replicate measurement (80 μg) about 30 specimens were picked and ultrasonically cleaned. δ18O is     	
     simultaneously measured with Δ47

  

  Figure 2. High-resolution early Eocene benthic δ13C en δ18O records from the Walvis Ridge (SE Atlantic)5 

Note: work in progress; data generation, 
compilation and processing not yet final

  Figure 1. Cenozoic deep-ocean temperature evolution based on δ18O1 

Figure 3. (top) reconstructed 
Δ47-based deep-ocean tem-
perature, (middle) foraminif-
eral δ18O measurements, and 
(bottom) calculated seawater 
δ18O using reconstructed tem-
perature and δ18Ocalcite data. 
Due to a limited amount of 
replicates a moving window 
of 21 measurements was 
applied.
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