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1 INTRODUCTION:
We aim to predict gravity fields as a constraint for geodynamical modelling. 
This requires using density models for the whole crust and mantle. Gravity is 
calculated using a direct integration method in the state-of-the-art finite 
element code ASPECT.

What this poster shows:
2. How we calculate gravity in ASPECT
3. Radial and Moho benchmarks to show 

that the gravity plugin works - ASPECT 
vs spherical harmonics

4. Gravity fields from CRUST1.0 and
tomographic models (S40RTS, SL3013, 
LLNL_G3D_JPS) – test scaling factors

5. Perspectives – work in progress
https://aspect.geodynamics.org
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We use Newton integrals to calculate gravitational acceleration (𝒈𝒈𝑚𝑚).
The post-processor receives as argument the coordinates x, y, z of a point and 
returns the gravity vector components 𝒈𝒈𝑥𝑥, 𝒈𝒈𝑦𝑦, 𝒈𝒈𝑧𝑧 at this location by means of 

𝒈𝒈𝑚𝑚 =
𝐺𝐺𝐺𝐺
𝒓𝒓𝟐𝟐

ASPECT is a FEM code, and volume integration is at the core of the FEM through 
Gauss Legendre Quadrature (GLQ):

3 BENCHMARKS:

MOHO benchmark (Root et al., 2016): Using the CRUST1.0 dataset (Laske et al., 2013), a density of 0 is set for the 
continental and oceanic crust, above a mantle of density 450 kg/m³. 
We compare gravity prediction from the direct integration method in ASPECT with a spherical harmonic code. 

Why gravity diverges? 
 Interpolation of the data into the mesh 
grid geometry for the direct integration (1) 
or the spherical harmonics (2)?

Gravity anomalies are obtained by subtracting the average of Earth’s gravity to 
the gravity at the point.

4 TOMOGRAPHIC MODELS:

Root et al., 2016

Radial gravity:

 Analytical solution exists for 
𝜌𝜌 = 𝜌𝜌0 in a hollow sphere:

 Dimensionless hollow sphere 
(1 < 𝑅𝑅 < 2)

 Radial gravity solution |𝒈𝒈|
 Test different mesh resolution

#1 Good fit between analytical 
and numerical solution.

#2 An increase of mesh resolution 
decreases numerical error. 

ASPECTSpherical Harmonics

The problem resides in how ASPECT 
interpolates the data in the geometry – so 

that the densities are actually different 
between the two methods.
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We use tomographic models to convert wave velocities to density for the whole 
mantle down to the CMB. Converting speed waves to density requires the use of 
a scaling factor so that: 
 We test a constant scaling factor and a scaling profile from Steinberger et al. 

(2016) applied to the reference density profile ak135 (Amaru, 2007).
 It also exists several tomographic models. Here we test S40RTS (Ritsema et al., 

2011), SL2013 (Schaeffer & Lebedev, 2013) on top of S40RTS
 We add CRUST1.0 on top of SL2013+S40RTS and test the sensitivity on gravity 

of the merging method between those two dataset. 

𝛿𝛿𝑙𝑙𝑙𝑙𝑉𝑉𝑝𝑝 → 𝛿𝛿𝑙𝑙𝑙𝑙𝑉𝑉𝑠𝑠 → 𝛿𝛿𝑙𝑙𝑙𝑙𝜌𝜌

S40RTS SL2013+S40RTS
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(A) ~36km lateral x 660m depth (B) ~18km lateral x 330m depth 

A higher ASPECT resolution slightly 
decreases the divergence, but still does 

not explain the high difference!

5 CONCLUSION:
 The direct integration is an accurate numerical method to calculate gravity fields, 

with a numerical error of less than 1 mgal achievable at low resolution.
 High resolution density models (e.g. CRUST1.0) require a higher discretized hollow 

sphere for the gravity solution to converge.
 How the tomographic models are scaled to density highly affect gravity predictions.
 A lithospheric density model is required to better calibrate global density fields.
 There is a long way before we can compare and constrain predicted gravity from 

density models to satellite data. 
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CRUST1.0 CRUST1.0+SL2013+S40RTS
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gravity difference
merging method

So far, can we match synthetic gravity 𝒈𝒈𝑚𝑚 with the observed 𝒈𝒈𝑠𝑠?
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CRUST1.0+SL2013+S40RTS
𝝆𝝆 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 → 𝟖𝟖𝟑𝟑𝟖𝟖𝟖𝟖

LLNL_G3D_JPS
(Simmons et al., 2015)

GOCO05 (Fecher et al., 2016)
harmonics 3-60

#1 how tomographic models are scaled 
impact on the gravity solution.

#2 gravity for this crust + mantle 
composite model varies according how 
dataset are merged (-60 to 140 mgal).

How to merge the uniform mantle density 
of CRUST1.0 on top of SL2013?

The pattern between 
synthetic and satellite 
gravity differs: why?

- tomographic models? 
- scaling factor?
- dataset merging?
- …
- dynamic topography?

A higher spectral geometry for the SH 
slightly decreases the divergence, but still 

does not explain the high difference
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