Warm deep-sea temperatures across Eocene Thermal

Maximum 2 from clumped isotope thermometry (4,.)

Background: A potential
for the future climate state is the ice-
free hothouse climate of the early
Eocene (56-48 Ma) . This period ex-
perienced the highest CO, levels of
the Cenozoic (1000 ppm)?, as well
as the occurrence of multiple tran-
sient (10-100 kyr) global warming
hyperthermals3.

events, so-called

These events are recorded by negative
excursions in carbon and oxygen iso-
topes (6*C and 6*0) in deep-sea sedi-
ments, which reflect major short-lived
perturbations of the carbon cycle and
climate system (Figure 1)*3.
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average hyperthermal peak temperatures of 16.9+£2.2 °C (95% Cl).

oxygen isotopes.

a potential pH effect on benthic foraminiferal oxygen isotopes.
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ocean basins and test the existing views on the homogeneity/heterogeneity of the ocean over the Cenozoic®.
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