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« Between 1900 and 2010, the concentrations of different N forms increased in most inland waters and the regions with
Background Results . ) T
5 50 high N concentrations substantially increased.
Rivers transport large amounts of nitrogen (N) from land to sea. River N loading has rapidly increased 70 a. N inputs of different forms 70 b. N export and N retention L . . . . .
with the accelerated alobal bioaeochemical N cvele since pre-industrial times. due to the ever-increasin 60 JINH,* 60 JJTN retention « The most rapid increases in TN concentrations were in eastern and southern Asia, Europe, southern North America,
. giob gec royeesineep . . g CINO, ™ FINH, ™ export —a 407 southeastern Oceania, and eastern Africa.
population, food production, fertilizer use, intensification and expansion of agriculture, and wastewater 50 JJON 50 JINO, ™ export ’
, I ION export . i . . . . o . .
discharge?. ™ “ “ 30 « In 2010, the highest ON and NO, concentrations were in extensive areas with rapid increases in N inputs from
agricultural intensification. The highest NH,* concentrations were scattered near big cities and coastal areas with

TN retention (%) *
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Meanwhile, human interference in river hydrology, such as construction of dams and reservoirs?, has %,30_ %,30_
. . . . . . . — -
increased the water travel time, and thus sediment trapping and biogeochemical retention?. ///MA”
20 1 20 -

20 - rapid increases in N inputs from point sources.
L . : : : : « N concentrations do not reflect N loading everywhere due to the different importance of in-stream N processes locally.
However, the N cycle and underlying in-stream mechanisms in global river basins remain unclear, " " 10 1 For examole:
particularly their spatial heterogeneity and temporal changes with the conspiring changes in human ey pie-
activities, climate and other environmental conditions. 0 S 00O oSS SIS S 0 5 00 oS e eSS S O T T e e e e e « Areas with active in-stream transformation processes do not show high N concentrations despite high N inputs,
S FFFEE S F P T ML C A RANCIRCE > ,906 @"Q ,9’9 @"9 .\cab*g ,\ca"’g ,\q@ ,\cs\" ,\q‘bg ,\qqg S S like natural systems in the tropics and reservoir areas.
Aim Figure 3. Temporal changes in overall N budget (inputs, export, and retention) in global river basins during 1900-2010. <« N concentrations in (semi-)arid areas may be high due to limited water discharge and limited in-stream processes.
To improve the quantitative understanding of the long-term changes in global river N cycle (sources of N, < The concentrations of one N form seem largely influenced by inputs of other N forms, e.g., NH,* produced from
loading, in-stream retention, and export to coastal waters of different N forms: nitrate, NO," ; ammonium, »  During the period 1900-2010, TN inputs, retention and export from global river basins have increased. mineralization of ON, and NO," produced from oxidation of NH,* (nitrification).
Y . . .
NH,"; organic nitrogen, ON) for the period since 1300. « Due to enhanced retention, TN river export increased less rapidly than TN inputs.
* Why? «  ON dominated TN inputs to river basins, followed by NO,- and NH,*. a SRS ' : : | P
* How much? « NO, dominated river TN export to oceans, followed by NH,* and ON. "
* Where? : , L
o * Inputs and export of NH,*, NO,", and ON increased at different rates. W el S
+ Changes due to human activities? . DT AR ,
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ammm | Figure 4. (a) Contributions of different in-stream processes to TN retention in global river basins during 1900-2010 and 008 K, 2 deyy N 008 NI Y,
Figure 1. Key research questions. (b-c) global N flows in different inland waterbodies for the dominant contributing processes: (b) denitrification in 2 2 : "
sediment and (c) burial in sediment. ifo‘fgo | ifo‘fgo
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Modelllng approach NH.* concentration in 1900 NH.* concentration in 2010
We use the 0.5 by 0.5 degree-resolution IMAGE-DGNM (Integrated Model to Assess the Global The increase in global in-stream TN retention is mainly due to increasing denitrification and burial in sediment. s |
Environment - Dynamic Global Nutrient Model) with the process-based DISC (Dynamic In-Stream « Low-order streams (with both large denitrification and large burial in sediment) are active sites for TN retention.
Chemistry) module*® to simulate the long-term changes in the annual N loading, in-stream biogeochemical * Reservoirs play an increasingly important role in global in-stream TN retention.
transformations, and river N export to coastal waters from global river basins during the period 1900-2010.
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Figure 2. Model scheme of IMAGE-DGNM. https://doi.org/10.1029/2019MS001796 and 2010 (right): (a, b) NO,, (c, d) NH,*, (e, f) ON, and (g, h) TN.
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