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Background

Sustainability has a multitude of dimensions, reflected by the 

sustainable development goals. Designing sustainable landscapes thus 

implies accounting for multiple objectives, which may be compatible 

or may conflict with each other (Figure 1). For example, reaching zero 

hunger (SDG 2) in a certain area may conflict with maximizing life on 

land (SDG 15), through deforestation by cropland expansion.

Figure 1. Some Sustainable Development Goals (SDGs) are compatible, while others conflict; 

simplified representation, as in reality synergies and trade-offs are place- and time-dependent.  

Computational methods

Quantifying synergies and trade-offs between these objectives can 

serve the landscape-design process. Multi-objective spatial 

optimization methods offer this quantification. Our work is in 1) the 

representation of space in such methods, 2) the consideration of 

uncertainty in the spatial input data, and 3) the integration of 

geosimulation and spatial optimization methods. 

Integration of geosimulation and spatial optimization
Geosimulation modelling simulates the future state of a system 

under predefined (feasible) scenarios. An impact assessment can be 

applied to compute the sustainability of these states. However, the 

rest of the solution space remains unknown (Figure 5). In contrast, 

multi-objective spatial optimization finds states with minimal impact. 

Yet, it does not tell whether these states are feasible to reach. 

Integrating both approaches resolves these weaknesses.

Representation of space
Genetic algorithms are the most 

commonly used multi-objective 

optimization methods. To apply 

them to spatial optimization 

problems, spatial arrangements 

(phenotype) need to be denoted 

by chromosomes (genotype). 

This brings about challenges to 

keep spatial relations intact in 

optimization processes, when 

cross-over and mutation alter 

the chromosomes (Figure 2).

Figure 2. Translation from the spatial 

arrangement of assets (here sugar cane 

mills) to chromosomes, still allowing small 

and large jumps to avoid local minima.

Figure 4. a) A Pareto interval between two 

objectives and b) spatial similarity (Kappa) 

of solutions in this interval (Hildemann & 

Verstegen, 2021).

Figure 3. Approximation of Pareto interval: 

a) sample spatial data, compute objectives, 

b) Seed extremes into genetic algorithm, c) 

Run GA 5x (Hildemann & Verstegen, 2021).

Consideration of uncertainty

Figure 5. Schematic representation of a land use change impact assessment for two 

sustainability dimensions, economic costs and environmental impacts, with 1) two scenarios A 

and B from a geosimulation model, 2) the Pareto front resulting from spatial optimization, and 

3) the integration of geosimulation and spatial optimization (Verstegen et al., 2017).
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Spatial data contain uncertainty, which propagates to the Pareto front. 

We quantify uncertainty in a Pareto front by finding the extreme lower 

and upper bound of optimal values in the objective space: a Pareto

interval (Figure 3). Spatial similarity between solutions in the interval 

shows the resulting landscape design uncertainty (Figure 4).  
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