Process driven engineering of sorbents for optimal CO, capture from air
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1 Introduction 2 Modeling tools

There exist hundreds of thousands of solid sorbent materials, both real and Methodology

hypothetical, mainly developed to capture CO, from point sources. + Simplified 0D model of a four-step %E{SCESS‘*“E % Lo

In this study, we first scan existing materials to assess their suitability to temperature vacuum swing (TVSA)

capture CO, from diluted sources, e.g. direct air capture (DAC). adsorption system. .

In a second step, we carry out a theoretical exercise and optimize the The model is based on a batch ’

parameters of different isotherm models, representing different isotherm system and each step is modeled

shapes. by assuming adsorption T | 1 T

(i) Adsorption ' (ii) Blow down | (iii) Heatingand | (iv) Cooling and
By doing so, we can investigate the limits of CO, adsorption from dilute feed equilibrium. ’ | vawm o repressurization
streams, in terms of process performance as well as costs. Extended by incorporating a neural network, trained with a rate-based
model, to include productivity as a performance parameter, besides the

Furthermore, we can compare these optimal isotherms with existing materials. e . _
specific thermal energy consumption, the purity as well as the recovery.

In addition, we consider saturation levels in the bed during adsorption below
100%.

Considering a ternary mixture as feed, where CO, is not necessarily the most
retained gas, i.e. we add H,O adsorption.

3 Sorbent screening

Screening of the NIST/ARPA-E database (around 2500 materials) and 80
additional adsorbents added by hand?. Including multiple CO, isotherm types in the model, i.e. Toth, extended Toth

model (Toth-cp), Langmuir-Freundlich, Dual-Site-Langmuir (DSL) and s-
Approach:
Data'base ; _ Workin oD
adsivrlt)r;nts 50rt|r> flttm>capa> mod> sort

N\ optimi _ shaped isotherm model.
Ing zation /,” zation /\ T
0D 1D . :
| i Z . Model validation
“(;a-s,_ur;i;s_, __________ Reasonable Reasonable

temperature objectives | | materials » Validation using a rate-based model*

e T teps:
Varying the CO, concentration in the feed (0.04%, 0.1%, 1.0%). WO STEPS

For y-,,>0.04%, the capture rate is constrained to >90%. Performance of a specific cycle Process-optimization

cooling

Resulting ranking: 0, heaing T adsorption minimize(-Pre,), subject to ¢ ¢,
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4 Sorbent isotherm optimization

4 r . .
Optimization variables Process modeling /Isotherm models + metrics

Sorbent Process + optlmlzatlon

* Fitting coefficients for | * Desorption | _ N T
Toth, Toth-cp, DSL, temperature T, 1 A0 | _ ‘ isting ‘
Langmuir-Freundlich, | * Vacuum
and S-shaped pressure p,..
isotherm model * Feed stream Voeq

* Physical properties:
density, void fraction, — i =
particle diameter : | ' _ _ TR TR T
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As an example, for one Pareto
point using the Toth-cp
isotherm model, with:

Total costs ($/t002

Comparing the simulated isotherms with respect Carrying out a sensitivity analysis
to isotherm metrics (working capacity, concerning kinetics using the rate-
equilibrium loading, initial slope, heat of based model:

adSOrpthn,...). kLDF=0.0001'O.1 S-l.

C = 1-20 cents/kWh,
¢, = 1-20 cents/kWhy,

C =2000-50000 $/m3

contactor
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