The Atlantic Ocean deep sea was very warm during the late Cenozoic. What does this mean for δ^{18}O$_{sw}$ and ECS?

Warm late Cenozoic bottom water temperatures until 2.2 Ma, revealed from clumped isotopes of ODP Site 1264

Ilja J. Kocken, B.L.P. Koene, J. Lyu, B. Spiering, R. Vorsellmans, W. Stouthamer, L. van Duin, N.M. van de Pol, N.J. Bode, T. Agterhuis, I.A. Müller, L.J. Lourens, M. Ziegler

1 Intro

Oxygen isotopes of foraminiferal shell remains have unlocked much of Earth’s climatic history. However, the δ^{18}O signal is not only temperature-dependent: it also depends on the composition of the fluid source from which the carbonate precipitated, which in turn is influenced by ice-sheet volume, Ocean currents, and evaporation/precipitation. Clumped isotope (Δ_c) palaeothermometry can disentangle the two; it is based on thermodynamic principles, is independent of composition of the sea water, shows no species-specific fractionation, and it measures regular stable isotopes simultaneously from the same samples.

2 Material and Methods

- Create ≥25 aliquots of 10–15 (80 to 100µg) washed foraminiferal shells.
- Dissolve in phosphoric acid at 70°C in a Kiel IV carbonate device and purify released CO$_2$ with cold traps and a porapak trap at –40°C to get rid of organic compounds.
- Measure isotopes on a Thermo Fischer Scientific 253 Plus.

- Pressure sensitive Base Line correction [1].
- Empirical Transfer Function (ETF) using 3 carbonate standards, ETH-1–3.
- Temperature calibration [2, 3].
- Calculate δ^{18}O$_{sw}$ from δ^{18}O$_{cc}$ and T [4, 5].
- Get higher Δ_c, δ^{18}O, and a low-res Δ_c, T, δ^{18}O record.
- 253 Plus.

3 Results

- Our South East Atlantic clumped isotope (Δ_c) record from benthic foraminifera corroborates global warm bottom water temperatures during the Miocene and Pliocene.
- We reconstruct high δ^{18}O$_{sw}$ values, which would indicate the presence of a larger-than modern Antarctic ice sheet.
- This is highly unlikely, there are probably other influences on δ^{18}O$_{sw}$
- Bottom water temperatures ultimately cooled to modern temperatures at around -2.5, when CO$_2$ values dropped.

4 Conclusions

- We reconstruct high δ^{18}O$_{sw}$ values, which would indicate the presence of a larger-than modern Antarctic ice sheet.
- This is highly unlikely, there are probably other influences on δ^{18}O$_{sw}$
- Bottom water temperatures ultimately cooled to modern temperatures at around ~2.5, when CO$_2$ values dropped.

References