The Atlantic Ocean deep sea was very warm during the late Cenozoic. What does this mean for $\delta^{18}O_{sw}$ and ECS?

Warm late Cenozoic bottom water temperatures until 2.2 Ma, revealed from clumped isotopes of ODP Site 1264

Ilja J. Kocken, B.L.P. Koene, J. Lyu, B. Spiering, R. Vorsselmans, W. Stouthamer, L. van Duin, N.M. van de Pol, N.J. Bode, T. Agterhuis, I.A. Müller, L.J. Lourens, M. Ziegler

1 Intro

Oxygen isotopes of foraminiferal shell remains have unlocked much of Earth's climatic history. However, the δ^{18} O signal is not only temperature-dependent: it also depends on the composition of the fluid source from which the carbonate precipitated, which in turn is influenced by ice-sheet volume, Ocean currents, and evaporation/precipitation. Clumped isotope (Δ_{47}) palaeothermometry can disentangle the two; it is based on thermodynamic principles, is independent of composition of the sea water, shows no species-specific fractionation, and it measures regular stable isotopes simultaneously from the same samples.

2 Material and Methods

3 Results

- Create ≥ 25 aliquots of 10–15 (80 to 100 µg) washed foram shells.
- Dissolve in phosphoric acid at 70 °C in a Kiel IV carbonate device and purify released CO₂ with cold traps and a porapak trap at -40 °C to get rid of organic compounds.
- Measure isotopes on a Thermo Fischer Scientific 253 Plus.

References

- [1] A. Nele Meckler et al. "Long-Term Performance of the Kiel Carbonate Device with a New Correction Scheme for Clumped Isotope Measurements: Performance and Correction of Kiel Clumped Isotope Measurements". In: *Rapid Communications in Mass Spectrometry* 28.15 (Aug. 2014), pp. 1705–1715. ISSN: 09514198. DOI: 10.1002/rcm.6949. URL: http://doi.wiley.com/10.1002/rcm.6949 (visited on 03/27/2017).
- N. Meinicke et al. "A Robust Calibration of the Clumped Isotopes to Temperature Relationship for Foraminifers". In: *Geochimica et Cosmochimica Acta* 270 (Feb. 2020), pp. 160–183. ISSN: 0016-7037. DOI: 10.1016/j.gca.2019.11.022. URL: http://www.sciencedirect.com/science/
- [5] Bryan E. Bemis et al. "Reevaluation of the Oxygen Isotopic Composition of Planktonic Foraminifera: Experimental Results and Revised Paleotemperature Equations". In: *Paleoceanography* 13.2 (1998), pp. 150–160. ISSN: 1944-9186. DOI: 10.1029/98PA00070. URL: https://agupubs. onlinelibrary.wiley.com/doi/abs/10.1029/98PA00070 (visited on 03/12/2019).
- [6] Thomas J. Leutert et al. "Southern Ocean Bottom Water Cooling and Ice Sheet Expansion during the Middle Miocene Climate Transition". In: *Climate of the Past Discussions* (Dec. 2020), pp. 1–26. ISSN: 1814-9324. DOI: 10.5194/cp-2020-157. URL: https://cp.copernicus.org/preprints/cp-

• Pressure sensitive Base Line correction [1].

• Calculate $\delta^{18}O_{sw}$ from $\delta^{18}O_{cc}$ and T [4, 5]

ate standards, ETH-1–3.

 $\delta^{18}O_{cc}$ record.

• Profit

• Temperature calibration[2, 3].

• Empirical Transfer Function (ETF) using 3 carbon-

• Get high-res δ^{13} C, δ^{18} O, and a low-res Δ_{47} , T,

1 - 106 - 000 - 00

4 Conclusions

- Our South East Atlantic clumped isotope (Δ_{47}) record from benthic foraminifera corroborates global warm bottom water temperatures during the Miocene and Pliocene.
- We reconstruct high $\delta^{18}O_{sw}$ values, which would indicate the presence of a largerthan modern Antarctic ice sheet.
- This is highly unlikely, there are probably other influences on $\delta^{18}O_{sw}$
- Bottom water temperatures ultimately cooled to modern temperatures at around ~ 2.5 , when CO₂ values dropped.

- article/pii/S0016703719307306 (visited on 11/03/2020).
- [3] N. Meinicke et al. "Coupled Mg/Ca and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer Cooling in the Western Pacific Warm Pool During the Last ~5 Million Years". In: *Paleoceanography and Paleoclimatology* 36.8 (2021), e2020PA004115. ISSN: 2572-4525. DOI: 10.1029/2020PA004115. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020PA004115 (visited on 08/30/2021).
- [4] Sang-Tae Kim and James R. O'Neil. "Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates". In: *Geochimica et Cosmochimica Acta* 61.16 (Aug. 1997), pp. 3461–3475.
 ISSN: 0016-7037. DOI: 10.1016/S0016-7037(97)00169-5. URL: http://www.sciencedirect. com/science/article/pii/S0016703797001695 (visited on 08/06/2019).
- 2020-157/ (visited on 12/18/2020).
- [7] S. E. Modestou et al. "Warm Middle Miocene Indian Ocean Bottom Water Temperatures: Comparison of Clumped Isotope and Mg/Ca Based Estimates". In: *Paleoceanography and Paleoclimatology* n/a.n/a (2020), e2020PA003927. ISSN: 2572-4525. DOI: 10.1029/2020PA003927. URL: https://agupubs.pericles-prod.literatumonline.com/doi/abs/10.1029/2020PA003927 (visited on 09/25/2020).
- [8] A. N. Meckler et al. "Cenozoic Evolution of Deep Ocean Temperature from Clumped Isotope Thermometry". In: Science 377.6601 (July 2022), pp. 86–90. DOI: 10.1126/science.abk0604. URL: https://www.science.org/doi/10.1126/science.abk0604 (visited on 07/05/2022).

Download the poster \rightarrow

