Trends in suspended sediment fluxes across the Rhine river basin (1997-2014) Tatjana Edler^a, Marcel van der Perk^a, Hans Middelkoop^a

^aUtrecht University, Department of Physical Geography, Faculty of Geosciences, PO Box 80125, 3508 TC Utrecht, The Netherlands **Contact: t.edler@uu.nl**

Introduction

It is estimated that 90% of river sediment is transported in suspension (Turowski et al., 2010)	Fine sediments contribute to the creation of habitat for aquatic species, bond to nutrients	orm riverbanks, odplains and tually for river Walling & Webb, 1996)	The decreasing sediment flux together with sea level rise will create a major threat to river ecosystems and people in deltas (Cox et al., 2021)	A quantitative temporal and spatial understanding of sediment distribution upstream of the delta is essential.	We aim to quantify the temporal changes in annual loads of suspended sediments in the Rhine river basin during the past decades.
---	---	---	--	---	--

Method

- Study area: Rhine basin
- Time periods:
 - 1958-2016
 - 1985-2006
 - 1997-2014
- **Rivers**: Rhine and four major tributaries (Aare, Neckar, Main and Mosel)
- Suspended Sediment Concentrations (SSC):
 - 1958-2016: Monthly measurements, since 1980 daily
 - 1985-2006: Daily measurements
 - 1997-2014: Fortnightly or monthly measurements of 18 suspended sediment monitoring stations and corresponding daily discharge measurement stations

Calculations:

1. Daily loads2. Application of a scale- breakRating curve method $SSC = a Q^b$ SSC = a Q^bFor better estimates on extreme events		3. Annual loads Sum of daily loads		4. Difference between stations Budget calculation of proceeding stations
---	--	--	--	--

1. Daily loads: The sediment rating curve method uses a log regression between measured suspended sediment concentrations and river discharge

2. Scale-break: Two-fold rating curve with a scale-break between the low and high discharge domain as proposed by Hoffmann et al. (2020) using a 5-year moving window. The scale-break was established at the arithmetic mean discharge.

- 3. Annual loads: These rating curves were subsequently used to calculate daily suspended sediment loads, which were summed to annual loads.
- 4. Map of difference in suspended sediment load between 1997-2014 at measurement stations. Green: increase; Red: decrease.

Results

Figure 2: Load decrease in % per station

Conclusions

1. Period 1958-2016

Figure 3: Section calculation

Info: Between two stations there is always a section. By subtracting the subsequent station from the preceding station, we receive the absolute difference between stations. This indicates whether a section is a source or a sink, depositing or eroding.

Sediment concentration and loads at Lobith decreased by 60-70% in the given period

2. Period 1985-2006

- The stations in the Rhine river show a average decrease of 32%
- Similarly, the tributaries with -52% (Neckar), -42% (Main) and -62% (Mosel)

3. Period 1997-2014

- At most stations, the suspended sediment load in the Rhine river show a consistent decreasing trend between 1997-2014
- In the Neckar, Main and Mosel tributaries, a similar pattern of a negligible change in suspended sediment loads in the headwater stations and a substantial decrease in load in the downstream stations is observed
- This suggests that the decline in suspended sediment loads is primarily caused by engineering works and human interventions in or along the river channel.

References

- Asselman, N., Middelkoop, H., & Van Dujk, P. M. (2003). The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. *Hydrological Processes*, 17(16), 3225–3244.
- Cox, J. R., Huismans, Y., Knaake, S. M., Leuven, J. R. F. W., Vellinga, N. E., van der Vegt, M., Hoitink, A. J. F., & Kleinhans, M. G. (2021). Anthropogenic Effects on the Contemporary Sediment Budget of the Lower Rhine-Meuse Delta Channel Network. *Earth's Future*, *9*(7).
- Hoffmann, Thomas & Baulig, Yannik & Fischer, Helmut & Blöthe, Jan. (2020). Scale-breaks of suspended sediment rating in large rivers in Germany induced by organic matter. 10.5194/esurf-2020-3.
- Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57(4), 1126–1146.
- Walling, D. E., & Webb, B. W. (1996). Erosion and sediment yield: A global overview. IAHS-AISH Publication, 236(236), 3–19.

Figure 4: Change in % per station

